Math 13004 - A Survey of Calculus

Take-home test 2

Due: Tuesday, November 22, 2022, 11:59PM (hard deadline)

Instructions:

- This test has four questions, each worth five points. Your goal is to get $\mathbf{1 6}$ points in total.
- Any extra points (>16) will eventually count towards increasing your grade $\left(\mathrm{A} \rightarrow \mathrm{A}^{+}, \mathrm{B}^{+} \rightarrow \mathrm{A}, \mathrm{B}^{-} \rightarrow \mathrm{B}\right.$, and so on) at the end of the semester.
- Each question is divided into subquestions. The points that each subquestion is worth are indicated next to it.
- Write your answers on separate sheets of paper.
- Write your name at the top of each page you use, and number each page.
- Number your answers correctly.
- Justify each step in all your answers fully and clearly. Answers with no explanation (even if the calculation is correct) are worth zero points. Answers with a full and correct explanation but a calculation error are worth more than 90% of the points.
- You are expected to work on this test alone. Plagiarism will be sanctioned with a fail grade.

1. Calculate the derivatives of the following functions.
(a) 1.5 points $f(x)=\frac{7 \cdot\left(x^{2}-4\right)^{\frac{1}{2}}}{x-2}$
(b) 1.5 points $f(x)=\ln \left(x^{3}+4\right)$
(c) 2 points $f(x)=e^{\left(e^{x}\right)}$
2. Consider the following real function.

$$
f(x)= \begin{cases}e^{2} \cdot \frac{\left(x^{3}+1\right)}{\left(x^{2}+1\right)} & \text { if } x \leq 0 \\ e^{\left(3 x^{2}+2\right)} & \text { if } x>0\end{cases}
$$

(a) 1 point Is f continuous at 0 ? Justify your answer.
(b) 2 points Is f differentiable at 0 ? If so, what is $f^{\prime}(0)$? Justify your answer.
(c) 2 points Does f have a local maximum or a local minimum in the interval $[-1,1]$? Justify your answer.
3. A bowl of a hot liquid at 200 degrees Fahrenheit is placed in a room whose ambient temperature is maintained constant at 60 degrees Fahrenheit.

The temperature of the liquid after x minutes is $T(x)$ degrees Fahrenheit, where T is the function:

$$
T(x)=60+(200-60) e^{-k x} \quad(k \text { is some constant real number }) .
$$

(a) 1.5 points Show that the derivative of T is the function

$$
T^{\prime}(x)=k \cdot(60-T(x))
$$

(b) 1.5 points If after 20 minutes, the temperature of the liquid is 130 degrees Fahrenheit, find the constant k.
(c) 1 point How much time does the liquid take to reach 100 degrees Fahrenheit?
(d) 1 point What are $\lim _{x \rightarrow \infty} T(x)$ and $\lim _{x \rightarrow \infty} T^{\prime}(x)$? Try to explain the meaning of this.

4. A juice manufacturer, RainyG, wants to minimize their packaging costs. RainyG sells rectangular cartons of juice of a fixed volume equal to $343 \mathrm{~cm}^{3}$ (cubic centimeters, or milliliters). The only constraint is that the bottom and top of each carton must be a square (of the same size).
(a) 1.5 points If the side of the bottom and top square has length x centimeters, what is the height $h(x)$ of the carton? (Hint: the volume of the carton is $h(x) \cdot x^{2}$ cubic centimeters.)
(b) 1.5 points Find the surface area of the carton (in square centimeters) if the side of the bottom and top square has length x centimeters. (Hint: The surface area of the carton is the sum of the areas of all its 6 faces (the top, bottom, front, back and the two sides).)
(c) 2 points The packaging material costs RainyG 0.1 cents per square centimeter. So if the surface area of the carton is $A(x)$ square centimeters (where x is the length of the side of the bottom and top face), then RainyG's cost function is

$$
C(x)=0.1 \cdot A(x) \quad \text { cents per carton. }
$$

Does the cost function have a minimum? If so, what is it (in cents per carton)?

