Math 13004 - A Survey of Calculus

Midterm Cheat-sheet

October 18, 2022

Rational functions

Remember: A rational function is a real function of the form $f(x)=\frac{p(x)}{q(x)}$, where p and q are 1-variable polynomials. The domain of a rational function $f(x)=\frac{p(x)}{q(x)}$ is the set of all real numbers except for the roots of q (the real numbers a such that $q(a)=0)$.

Algebra of limits

Let f and g be any real functions. If a is any real number or ∞ or $-\infty$, and if the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

- Sum: $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- Product: $\lim _{x \rightarrow a} f(x) \cdot g(x)=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
- Quotient: If $\lim _{x \rightarrow a} g(x)$ is not equal to 0, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, and if a is a root of both polynomials p and q, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{p_{1}(x)}{q_{1}(x)}$, where $p(x)=p_{1}(x) \cdot(x-a)$ and $q(x)=q_{1}(x) \cdot(x-a)$.

Algebra of continuity

Remember: A real function f is continuous at a real number a if $f(a)$ is defined and if $\lim _{x \rightarrow a} f(x)=f(a)$.
If f and g are continuous at a, then:

- Sum: $(f+g)(x)=f(x)+g(x)$ is continuous at a.
- Product: $(f \cdot g)(x)=f(x) \cdot g(x)$ is continuous at a.
- Quotient: If $g(a) \neq 0$, then $\frac{f}{g}(x)=\frac{f(x)}{g(x)}$ is continuous at a.

Derivatives

Remember: Let f be a continuous real function. The derivative of f at a real number x is defined to be the limit:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} D_{h} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

If the derivative of f exists at every real number x in an interval I, then f is differentiable over the interval I.
Remember: If f is differentiable over I, then the derivative f^{\prime} is a real function that is continuous over I.
Remember: A function f is strictly increasing at a real number a if $f^{\prime}(a)>0$.
Remember: A function f is strictly decreasing at a real number a if $f^{\prime}(a)<0$.

Rules for derivatives

Let f, g be real functions that are differentiable over an interval I. Then,

- Sum rule:

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

- Product rule:

$$
(f \cdot g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

- Quotient rule: If $g(x)$ is never 0 over I, then

$$
\frac{f}{g}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}
$$

Some useful derivatives

The derivatives of some useful functions are given below.

- If $f(x)=a$ (for some constant real number a), then $f^{\prime}(x)=0$.
- If $f(x)=x^{a}$ (for some constant real number a), then $f^{\prime}(x)=a \cdot x^{a-1}$.
- If $f(x)=a \cdot g(x)$ (for some constant real number a and some function g), then $f^{\prime}(x)=a \cdot g^{\prime}(x)$.

