Math 13004 - A Survey of Calculus

Practice Exam

December 8, 2022 Time: 2 hours

Instructions:

- You have exactly 2 hours to finish the exam.
- You are allowed to use your personal notes (paper only) and a graphing calculator. No other devices (computers, cell phones, tablets) may be used.
- You must write your name and student ID at the top of the first page, and you must initial every page that you use.
- This exam has five questions, each worth five points. Your goal is to get $\mathbf{1 8}$ points in total.
- Any extra points (>18) will eventually count towards increasing your grade $\left(\mathrm{A} \rightarrow \mathrm{A}^{+}, \mathrm{B}^{+} \rightarrow \mathrm{A}\right.$, $\mathrm{B}^{-} \rightarrow \mathrm{B}$, and so on) at the end of the semester.
- Each question is divided into subquestions. The points that each subquestion is worth are indicated next to it.
- Write your answers clearly and neatly in the space provided after each question.
- Ask for extra sheets of paper if you need them.
- Number your answers correctly (especially if you're using extra sheets of paper).
- Justify your answers fully and clearly. Answers with no explanation (even if the final calculation is correct) are worth zero points. Answers with a full and correct explanation but a calculation error are worth more than 90% of the points.

Your Name:

Your Student ID:

1. (a) (2 points) Which of the following graphs represent real functions? Which of the functions is continuous over the interval $[-1,1]$?

Solution:

i. The graph is a real function, since it passes the vertical line test. The function is continuous over the interval $[-1,1]$, since it passes the pen-to-paper test over this interval.
ii. The graph is a real function, since it passes the vertical line test. The function is not continuous over the interval $[-1,1]$, since it doesn't pass the pen-to-paper test over this interval (its value at 0 is undefined).
(b) (3 points) Calculate the following limits.
i. $\lim _{x \rightarrow 2} \frac{3 x^{2}-6}{x^{2}-3}$
ii. $\lim _{x \rightarrow 2} \frac{x^{4}-3 x^{2}-4}{x-2}$
iii. $\lim _{x \rightarrow \infty} \frac{x^{2}+4 x-3}{x^{3}-1}$

Solution:

i. By direct substitution, we have

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-6}{x^{2}-3}=\frac{3(2)^{2}-6}{(2)^{2}-3}=\frac{12-6}{4-1}=6
$$

ii. If we try to use the substitution formula we get $\frac{0}{0}$, which doesn't make sense. But this tells us that the polynomials $p(x)=x^{4}-3 x^{2}-4$ and $q(x)=x-2$ both have 2 as a root (that is, $p(2)=0$ and $\left.q(2)=0\right)$. Therefore $p(x)=(x-2) \cdot p_{1}(x)$ and of course $q(x)=(x-2) \cdot 1$. We can find $p_{1}(x)$ by long division:

$$
\begin{aligned}
& x-2) \begin{array}{lrl}
& x^{3}+2 x^{2} & +x+2 \\
x^{4} & -3 x^{2} & -4
\end{array} \\
& \frac{-x^{4}+2 x^{3}}{2 x^{3}}-3 x^{2} \\
& \frac{-2 x^{3}+4 x^{2}}{x^{2}} \\
& \frac{-x^{2}+2 x}{2 x-4} \\
& \begin{array}{r}
-2 x+4 \\
0
\end{array}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{4}-3 x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{3}+2 x^{2}+x+2\right)}{(x-2) \cdot 1} \\
& =2^{3}+2\left(2^{2}\right)+2+2=20 .
\end{aligned}
$$

iii. If we try to use the substitution formula, we get $\frac{\infty}{\infty}$ which is not a real number (doesn't make sense).

Whenever $x>0$ (which will be the case when $x \rightarrow \infty$), we have

$$
\begin{aligned}
\frac{x^{2}+4 x-3}{x^{3}-1} & =\frac{\frac{x^{2}+4 x-3}{x^{3}}}{\frac{x^{3}-1}{x^{3}}} \\
& =\frac{\frac{1}{x}+\frac{4}{x^{2}}-\frac{1}{x^{3}}}{1-\frac{1}{x^{3}}}
\end{aligned}
$$

So we can use the algebra of limits to get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{4}{x^{2}}-\frac{1}{x^{3}}}{1-\frac{1}{x^{3}}} & =\frac{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{4}{x^{2}}-\lim _{x \rightarrow \infty} \frac{1}{x^{3}}}{1-\lim _{x \rightarrow \infty} \frac{1}{x^{3}}} \\
& =\frac{0+0-0}{1-0}=0
\end{aligned}
$$

2. (a) (3 points) Calculate the derivatives of the following functions.
i. $f(x)=6 x^{1 / 3}+2 x^{-3 / 4}$
ii. $f(x)=\ln \left(x^{2}+3\right)$
iii. $f(x)=e^{\left(3 x^{3}-\ln (x)\right)}$

Solution:

i. We use the algebra of derivatives to get

$$
\frac{d}{d x}\left(6 x^{1 / 3}+2 x^{-3 / 4}\right)=6 \frac{d}{d x}\left(x^{1 / 3}\right)+2 \frac{d}{d x}\left(x^{-3 / 4}\right)=6 \cdot \frac{1}{3} \cdot x^{-2 / 3}+2 \cdot\left(\frac{-3}{4}\right) \cdot x^{-7 / 4}=2 x^{-2 / 3}-\frac{3}{2} x^{-7 / 4}
$$

ii. f can be written as the composite function $g \circ h(x)=g(h(x))$, where $h(x)=x^{2}+3$ and $g(x)=\ln (x)$. Therefore, we can apply the chain rule to get

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =\frac{1}{h(x)} \cdot 2 x \\
& =\frac{2 x}{x^{2}+3}
\end{aligned}
$$

iii. f can be written as the composite function $g \circ h(x)=g(h(x))$, where $g(x)=e^{x}$ and $h(x)=3 x^{3}-\ln (x)$. Therefore, we can apply the chain rule to get

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =e^{h(x)} \cdot\left(9 x^{2}-\frac{1}{x}\right) \\
& =\left(9 x^{2}-\frac{1}{x}\right) \cdot e^{\left(3 x^{3}-\ln (x)\right)}
\end{aligned}
$$

(b) (2 points) Calculate the Riemann integrals of the following functions.
i. $f(x)=4 x^{3}+2 x^{-2 / 3}$
ii. $f(x)=e^{4 x}+x^{-3 / 2}$

Solution:

i. We use the rules for Riemann integrals to get

$$
\begin{aligned}
\left(\int f\right)(x) & =\left(\int_{0}^{x} 4 x^{3} \cdot d x\right)+\left(\int_{0}^{x} 2 x^{-2 / 3} \cdot d x\right) \\
& =4 \cdot \frac{x^{4}}{4}+2 \cdot \frac{x^{1 / 3}}{\frac{1}{3}} \\
& =x^{4}+6 x^{1 / 3}
\end{aligned}
$$

ii. We use the rules for Riemann integrals to get

$$
\begin{aligned}
\left(\int f\right)(x) & =\left(\int_{0}^{x} e^{4 x} \cdot d x\right)+\left(\int_{0}^{x} x^{-3 / 2} \cdot d x\right) \\
& =\frac{e^{4 x}-1}{4}+\frac{x^{-1 / 2}}{-\frac{1}{2}} \\
& =\frac{e^{4 x}-1}{4}-2 x^{-1 / 2}
\end{aligned}
$$

3. Consider the following function.

$$
f(x)= \begin{cases}x^{3}-6\left(x^{2}+4\right)^{1 / 2} & \text { if } x \geq 0 \\ 4 x^{2}-12 & \text { if } x<0\end{cases}
$$

(a) (1 point) Is f continuous at 0 ?
(b) (2 points) Is f differentiable at 0 ?
(c) (2 points) Does f have a local maximum or a local minimum at 0 ?

Solution:

(a) When $x<0, f(x)=4 x^{2}+12$. So we have

$$
\lim _{x \rightarrow 0^{-}} f(x)=4\left(0^{2}\right)+12=12
$$

When $x>0, f(x)=x^{3}-6\left(x^{2}+4\right)^{1 / 2}$. So we have

$$
\lim _{x \rightarrow 0^{+}} f(x)=0^{3}-6\left(0^{2}+4\right)^{1 / 2}=6\left(4^{1 / 2}\right)=12
$$

Finally, when $x=0, f(x)=12$. Therefore, since $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0), f$ is continuous at 0 .
(b) In order to be differentiable at $0, f$ must be continuous at 0 and the limit $\lim _{h \rightarrow 0} D_{h} f(0)$ must exist. We have just shown that f is continuous at 0 , so now we need to show that $\lim _{h \rightarrow 0} D_{h} f(0)$ exists.
We have

$$
\lim _{h \rightarrow 0^{-}} D_{h} f(0)=\lim _{h \rightarrow 0^{-}} D_{h} g(0)=g^{\prime}(0)
$$

where $g(x)=4 x^{2}-12$. Since $g^{\prime}(x)=8 x$, we have $g^{\prime}(0)=0$
We have

$$
\lim _{h \rightarrow 0^{+}} D_{h} f(0)=\lim _{h \rightarrow 0^{+}} D_{h} u(0)=u^{\prime}(0)
$$

where $u(x)=x^{3}-6\left(x^{2}+4\right)^{1 / 2}$. Using the chain rule, we have

$$
u^{\prime}(x)=3 x^{2}-3\left(x^{2}+4\right)^{-1 / 2} \cdot 2 x
$$

and so $u^{\prime}(0)=0$.
Therefore, since $\lim _{h \rightarrow 0^{-}} D_{h} f(0)=\lim _{h \rightarrow 0^{+}} D_{h} f(0)$, the derivative of f at 0 exists, and so f is differentiable at 0 .
4. A company estimates their total cost function to produce x units to be

$$
C(x)=4000+0.25 x^{2} \quad \text { thousand dollars }
$$

The company also estimates that in order to sell x units, each unit must be priced at

$$
f(x)=150-0.5 x \quad \text { thousand dollars. }
$$

(a) (2 points) Assuming x units are produced and sold, calculate the total revenue function $R(x)$ and the total profit function $P(x)$.
(b) (2 points) How many units must be produced and sold to maximize profit? What is the maximum profit?
(c) (1 point) What price per unit must be charged to maximize profit?

Solution:

(a) The total revenue from selling x units is at $f(x)$ thousand dollars each is

$$
R(x)=x \cdot f(x)=150 x-0.5 x^{2} \quad \text { thousand dollars. }
$$

The total profit from producing and selling x units is

$$
P(x)=R(x)-C(x)=150 x-0.5 x^{2}-4000-0.25 x^{2}=150 x-0.75 x^{2}-4000
$$

(b) To maximize profit, we need to find a maximum of the total profit function P. To do so, we first calculate the critical points of P by finding the derivative

$$
P^{\prime}(x)=150-1.5 x
$$

and then solving $P^{\prime}(x)=0$ to get $x=100$ as the only critical point of P. To check if $x=100$ is a maximum of P, we need to check that $P^{\prime \prime}(100)<0$. Since $P^{\prime \prime}(x)=-1.5, P^{\prime \prime}(100)=-1.5$, and so $x=100$ is a maximum of P.
Therefore, profit will be maximized by producing and selling 100 units. The maximum profit is $P(100)=3500$ thousand dollars, or 3.5 million dollars.
(c) The price per unit that must be charged to maximize profit is $f(100)=100$ thousand dollars.
5. Like all mammals, humans' bodies are maintained at a fixed temperature (98.6 degrees Fahrenheit) while they are alive. When a person dies, their corpse's temperature decreases as follows: At x hours after death, the corpse's temperature is

$$
T(x)=T_{0}+\left(98.6-T_{0}\right) e^{-k x} \quad \text { degrees Fahrenheit }
$$

where T_{0} is the ambient temperature (of the room or environment) and k is a positive constant real number.
Upon arrival, a coroner finds the temperature of a corpse to be 61.6 degrees Fahrenheit. After 1 hour, the coroner measures the corpse's temperature to be 57.2 degrees Fahrenheit. The corpse is in a location whose ambient temperature is 10 degrees Fahrenheit.
(a) (2 points) If the coroner arrived x hours after the person died, then use the equation $\frac{T(x)}{T(x+1)}=\frac{61.6}{57.2}$ to find the constant k.
(b) ($1 \frac{1}{2}$ points) If the coroner arrived at 11 PM , when did the person die?
(c) ($11 / 2$ points) What was the rate of change of the corpse's temperature (in degrees Fahrenheit per hour) when the coroner arrived?

Solution:

(a) We know that $T(x)=61.6$ degrees Fahrenheit and $T(x+1)=57.2$ degrees Fahrenheit. Therefore, we have

$$
\begin{array}{ll}
& \frac{T(x)}{T(x+1)}=\frac{61.6}{57.2} \\
\text { i.e. } & \frac{\left(98.6-T_{0}\right) e^{-k x}}{\left(98.6-T_{0}\right) e^{-k(x+1)}}=\frac{61.6}{57.2} \\
\text { i.e. } & e^{k(x+1)-k x}=\frac{61.6}{57.2} \\
\text { i.e. } & e^{k}=\frac{61.6}{57.2} \\
\text { i.e. } & k=\ln \left(\frac{61.6}{57.2}\right) \\
\text { i.e. } \quad k=\ln 61.6-\ln 57.2 \approx 0.074 .
\end{array}
$$

(b) Since $T(x)=61.6$ and $T_{0}=10$ degrees Fahrenheit, we have

$$
\begin{aligned}
&\left(98.6-T_{0}\right) e^{-0.074 x}=61.6 \\
&(98.6-10) e^{-.074 x}=61.6 \\
& e^{.074 x}=\frac{88.6}{61.6} \\
& .074 x=\ln \left(\frac{88.6}{61.6}\right) x=\frac{1}{.074} \ln \left(\frac{88.6}{61.6}\right) \approx 4.91
\end{aligned}
$$

Therefore the coroner arrived about 5 hours after the person died, i.e. the person died at 6 PM .
(c) The rate of change of the corpse's temperature when the coroner arrived was $T^{\prime}(4.91)$. Since

$$
T^{\prime}(x)=k\left(T_{0}-T(x)\right)
$$

we have $T^{\prime}(4.91)=.074(10-61.6) \approx-3.82$ degrees Fahrenheit per hour.

