Math 150 $03-Calculus \ I$

Homework assignment 3

Due: Wednesday, October 4, 2023

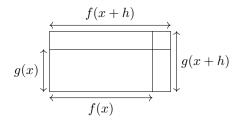
Instructions: Write your answers on a separate sheet of paper. Write your name at the top of each page you use, and number each page. Number your answers correctly. Justify all your answers.

1. (The product rule for derivatives.)

Let f and g be real functions that are differentiable at a real number x (i.e. such that the derivatives f'(x) and g'(x) exist). We would like to calculate the derivative $(f \cdot g)'(x)$ of the product function $f \cdot g$. Remember that this function is defined as:

$$f \cdot g(x) = f(x) \cdot g(x)$$

(a) Suppose that h is a small real number. In the figure below, shade the region that corresponds to the value $(f \cdot g(x+h) - f \cdot g(x))$.



(b) Use the figure to show that this value can also be written as

$$\left(\left(f(x+h)-f(x)\right)\cdot g(x+h)\right)+\left(f(x)\cdot \left(g(x+h)-g(x)\right)\right)$$

(c) Use the previous answer to show that the difference quotient $D(f \cdot g)_x(h)$ can be written as

$$D(f \cdot g)_x(h) = \left(Df_x(h) \cdot g(x+h)\right) + \left(f(x) \cdot Dg_x(h)\right)$$

(d) Since g is differentiable at x, g must be continuous at x (we will see why later). Show that if g is continuous at x, then we have that

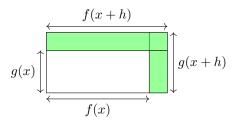
$$\lim_{h \to 0} g(x+h) = g(x)$$

(e) Use the previous two answers and the algebra of limits to show the **product rule for derivatives**:

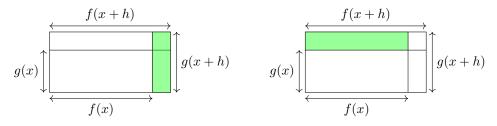
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Solution:

(a) Since $f \cdot g(x+h) = f(x+h) \cdot g(x+h)$ is the area of the outer rectangle, and $f \cdot g(x) = f(x) \cdot g(x)$ is the area of the inner rectangle, the shaded region below corresponds to $f \cdot g(x+h) - f \cdot g(x)$.



(b) The previous shaded region is the sum of the two regions below.



The area of the first rectangle is $(f(x+h) - f(x)) \cdot g(x+h)$ and the area of the second one is $f(x) \cdot (g(x+h) - g(x))$. Therefore we have

$$\left(f \cdot g(x+h) - f \cdot g(x)\right) = \left(\left(f(x+h) - f(x)\right) \cdot g(x+h)\right) + \left(f(x) \cdot \left(g(x+h) - g(x)\right)\right)$$

(c) We have

$$D(f \cdot g)_x(h) = \frac{f \cdot g(x+h) - f \cdot g(x)}{h}$$
(by definition of $D(f \cdot g)_x(h)$)
$$= \frac{\left(\left(f(x+h) - f(x)\right) \cdot g(x+h)\right) + \left(f(x) \cdot \left(g(x+h) - g(x)\right)\right)}{h}$$
(from the previous answer)
$$= \left(\frac{\left(f(x+h) - f(x)\right)}{h} \cdot g(x+h)\right) + \left(f(x) \cdot \frac{\left(g(x+h) - g(x)\right)}{h}\right)$$
$$= \boxed{Df_x(h) \cdot g(x+h) + f(x) \cdot Dg_x(h)}$$

(d) Recall the fact about continuous functions and limits: **Fact:** If *i* is any real function such that the limit $\lim_{x \to a} i(x)$ exists, and if *j* is any real function that is continuous at $\lim_{x \to a} i(x)$, then we have:

$$\lim_{x \to a} j(i(x)) = j\left(\lim_{x \to a} i(x)\right)$$

We can apply this fact to the function i(h) = x + h. We know (using the algebra of limits) that $\lim_{h \to 0} i(h) = x$. We also know that g is continuous at x. Therefore the fact tells us that

$$\lim_{h \to 0} g(x+h) = \lim_{h \to 0} g(i(h)) = g(\lim_{h \to 0} i(h)) = g(x)$$

(e) We have

$$(f \cdot g)'(x) = \lim_{h \to 0} D(f \cdot g)_x(h)$$

=
$$\lim_{h \to 0} \left(Df_x(h) \cdot g(x+h) + f(x) \cdot Dg_x(h) \right) \quad \text{(using answer (c))}$$

=
$$\left(\lim_{h \to 0} Df_x(h) \right) \cdot \left(\lim_{h \to 0} g(x+h) \right) + f(x) \cdot \left(\lim_{h \to 0} Dg_x(h) \right) \quad \text{(using the algebra of limits)}$$

=
$$\boxed{f'(x) \cdot g(x) + f(x) \cdot g'(x)} \quad \text{(using answer (d) and the definition of } f' \text{ and } g')$$

- 2. (a) Let f be the function $f(x) = x^3$. Calculate the h-difference quotient $Df_x(h)$ and the derivative function f' using the limit definition of the derivative.
 - (b) Since the function $f(x) = x^3$ can be written as $f(x) = x \cdot x^2$, use the product rule for derivatives to calculate the derivative f'(x). Is this easier than the calculation in the previous question?
 - (c) Use the product rule for derivatives to calculate the derivatives of the functions:
 - i. $f(x) = x^4$ (Hint: $f(x) = x \cdot x^3$) ii. $f(x) = x^5$ iii. $f(x) = x^6$
 - (d) Infer a general formula for the derivative of the function $f(x) = x^n$, where $n \in \mathbb{N}$ is some natural number.
 - (e) Use the previous answer to calculate the derivative of the function $f(x) = x^9 4x^3 + 7$.

Solution:

(a) We have

$$Df_x(h) = \frac{f(x+h) - f(x)}{h}$$

= $\frac{(x+h)^3 - x^3}{h}$
= $\frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h}$
= $\frac{3x^2h + 3xh^{\frac{1}{2}} + h^{\frac{1}{2}}}{h}$
= $\frac{3x^2 + 3xh + h^2}{h}$.

Therefore, we have

$$f'(x) = \lim_{h \to 0} Df_x(h)$$

= $\lim_{h \to 0} (3x^2 + 3xh + h^2)$
= $3x^2 + 3x \cdot 0 + 0^2$
= $\boxed{3x^2}$.

(b) We saw in class that the derivative of the function g(x) = x is g'(x) = 1 and the derivative of the function $i(x) = x^2$ is i'(x) = 2x. Since we can write $f(x) = x \cdot x^2 = g(x) \cdot i(x)$, we can use

the product rule to find:

$$f'(x) = g'(x) \cdot i(x) + g(x) \cdot i'(x)$$
$$= x^2 + x \cdot 2x$$
$$= \boxed{3x^2}.$$

(c) i. We have $f(x) = x \cdot x^3 = g(x) \cdot i(x)$. We use the prouct rule to find

$$f'(x) = x^3 + x \cdot 3x^2 = \boxed{4x^3}$$

ii. We have $f(x) = x \cdot x^4 = g(x) \cdot i(x)$. We use the prouct rule to find

$$f'(x) = x^4 + x \cdot 4x^3 = 5x^4$$

iii. We have $f(x) = x \cdot x^5 = g(x) \cdot i(x)$. We use the prouct rule to find

$$f'(x) = x^5 + x \cdot 5x^4 = 6x^5$$

(d) In general, if $n \in \mathbb{N}$ is some natural number bigger than 6, we can write $f(x) = x^n = x \cdot x^{n-1} = g(x) \cdot i(x)$, and we can suppose that we have found that $i'(x) = (n-1) \cdot x^{n-2}$. So using the product rule, we have

$$f'(x) = x^{n-1} + x \cdot (n-1)x^{n-2} = \boxed{nx^{n-1}}.$$

(e) We have f(x) = g(x) - 4h(x) + 7. Therefore

$$f'(x) = g'(x) - 4h'(x) + 0 \qquad \text{(using the sum and constant rules for derivatives)}$$
$$= 9x^8 - 4 \cdot 3x^2 \qquad \text{(using the formula we just found)}$$
$$= \boxed{9x^8 - 12x^2}.$$