Math 15003 - Calculus I

Homework assignment 3

Due: Wednesday, October 4, 2023

Instructions: Write your answers on a separate sheet of paper. Write your name at the top of each page you use, and number each page. Number your answers correctly.

Justify all your answers.

1. (The product rule for derivatives.)

Let f and g be real functions that are differentiable at a real number x (i.e. such that the derivatives $f^{\prime}(x)$ and $g^{\prime}(x)$ exist). We would like to calculate the derivative $(f \cdot g)^{\prime}(x)$ of the product function $f \cdot g$. Remember that this function is defined as:

$$
f \cdot g(x)=f(x) \cdot g(x)
$$

(a) Suppose that h is a small real number. In the figure below, shade the region that corresponds to the value $(f \cdot g(x+h)-f \cdot g(x))$.

(b) Use the figure to show that this value can also be written as

$$
((f(x+h)-f(x)) \cdot g(x+h))+(f(x) \cdot(g(x+h)-g(x)))
$$

(c) Use the previous answer to show that the difference quotient $D(f \cdot g)_{x}(h)$ can be written as

$$
D(f \cdot g)_{x}(h)=\left(D f_{x}(h) \cdot g(x+h)\right)+\left(f(x) \cdot D g_{x}(h)\right)
$$

(d) Since g is differentiable at x, g must be continuous at x (we will see why later). Show that if g is continuous at x, then we have that

$$
\lim _{h \rightarrow 0} g(x+h)=g(x)
$$

(e) Use the previous two answers and the algebra of limits to show the product rule for derivatives:

$$
(f \cdot g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

2. (a) Let f be the function $f(x)=x^{3}$. Calculate the h-difference quotient $D f_{x}(h)$ and the derivative function f^{\prime} using the limit definition of the derivative.
(b) Since the function $f(x)=x^{3}$ can be written as $f(x)=x \cdot x^{2}$, use the product rule for derivatives to calculate the derivative $f^{\prime}(x)$. Is this easier than the calculation in the previous question?
(c) Use the product rule for derivatives to calculate the derivatives of the functions:
i. $f(x)=x^{4} \quad\left(\right.$ Hint: $\left.f(x)=x \cdot x^{3}\right)$
ii. $f(x)=x^{5}$
iii. $f(x)=x^{6}$
(d) Infer a general formula for the derivative of the function $f(x)=x^{n}$, where $n \in \mathbb{N}$ is some natural number.
(e) Use the previous answer to calculate the derivative of the function $f(x)=x^{9}-4 x^{3}+7$.
