# Math 15003 - Calculus I 

## Homework assignment 4

Due: Wednesday, October 18, 2023

The derivatives of some useful functions are given below.

- If $f(x)=a^{x}$ (for some constant real number $\left.a \geq 0\right)$, then $f^{\prime}(x)=a^{x} \cdot \ln (a)\left(\right.$ where $\left.\ln (a)=\log _{e} a\right)$.
- If $f(x)=\log _{a} x$ (for some constant real number $a>0$ and $a \neq 1$ ), then $f^{\prime}(x)=\frac{1}{x \cdot \ln (a)}$.
- If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
- If $f(x)=\cos (x)$, then $f^{\prime}(x)=-\sin (x)$.

1. Evaluate the derivatives of the following functions.
(a) $f(x)=2^{x^{2}+2 x} \cdot(\cos (x))^{4}$
(b) $f(x)=\left(e^{x}+3\right)^{\frac{1}{2}}$
(c) $f(x)=\left(\sec (x)+e^{x}\right)^{9}$

## Solution:

(a) We have $f(x)=g(x) \cdot h(x)$, where $g(x)=2^{x^{2}+2 x}$ and $h(x)=(\cos (x))^{4}$. Hence

$$
f^{\prime}(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x) \quad \text { (using the product rule) }
$$

To find $g^{\prime}(x)$ we can use the chain rule by writing $g(x)$ as a composite function $g(x)=i(j(x))$, where $i(x)=2^{x}$ and $j(x)=x^{2}+2 x$. Hence

$$
\begin{aligned}
g^{\prime}(x) & =i^{\prime}(j(x)) \cdot j^{\prime}(x) \\
& =\left(2^{x^{2}+2 x} \cdot \ln (2)\right) \cdot(2 x+2) \quad\left(\text { since } i^{\prime}(x)=2^{x} \ln (2) \text { and } j^{\prime}(x)=2 x+2\right)
\end{aligned}
$$

Similarly, to find $h^{\prime}(x)$, we can use the chain rule by writing $h(x)$ as a composite function $h(x)=i(j(x))$, where $i(x)=x^{4}$ and $j(x)=\cos (x)$. Hence

$$
\begin{aligned}
h^{\prime}(x) & =i^{\prime}(j(x)) \cdot j^{\prime}(x) \\
& =4(\cos (x))^{3} \cdot(-\sin (x)) \quad\left(\text { since } i^{\prime}(x)=4 x^{3} \text { and } j^{\prime}(x)=-\sin (x)\right) \\
& =-4(\cos (x))^{3} \cdot \sin (x)
\end{aligned}
$$

Therefore, we can finally write $f^{\prime}(x)$ as

$$
\begin{aligned}
f^{\prime}(x) & =\left(\left(2^{x^{2}+2 x} \cdot \ln (2)\right) \cdot(2 x+2) \cdot(\cos (x))^{4}\right)+\left(2^{x^{2}+2 x} \cdot\left(-4(\cos (x))^{3} \cdot \sin (x)\right)\right) \\
& =2^{x^{2}+2 x} \cdot(\cos (x))^{3} \cdot(\ln (2) \cdot(2 x+2) \cdot \cos (x)-4 \sin (x))
\end{aligned}
$$

(b) We have $f(x)=g(h(x))$, where $g(x)=x^{\frac{1}{2}}$ and $h(x)=e^{x}+3$. Hence we can use the chain rule to find

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =\frac{1}{2} \cdot\left(e^{x}+3\right)^{-\frac{1}{2}} \cdot e^{x} \quad\left(\text { since } g^{\prime}(x)=\frac{1}{2} \cdot x^{-\frac{1}{2}} \text { and } h^{\prime}(x)=e^{x}\right)
\end{aligned}
$$

(c) We have $f(x)=g(h(x))$, where $g(x)=x^{9}$ and $h(x)=\sec (x)+e^{x}$. To find $h^{\prime}(x)$, we have

$$
\begin{aligned}
h^{\prime}(x) & \left.=\frac{d}{d x}\left[\frac{1}{\cos (x)}\right]+\frac{d}{d x}\left[e^{x}\right] \quad \text { (using the sum rule, and since } \sec (x)=\frac{1}{\cos (x)}\right) \\
& =\frac{0 \cdot \cos (x)-1 \cdot(-\sin (x))}{(\cos (x))^{2}}+e^{x} \quad \text { (using the quotient rule) } \\
& =\frac{\sin (x)}{(\cos (x))^{2}}+e^{x} \\
& =\frac{1}{\cos (x)} \cdot \frac{\sin (x)}{\cos (x)}+e^{x} \\
& =\sec (x) \cdot \tan (x)+e^{x}
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \quad \text { (using the chain rule) } \\
& =9\left(\sec (x)+e^{x}\right)^{8} \cdot\left(\sec (x) \cdot \tan (x)+e^{x}\right) \quad\left(\text { since } g^{\prime}(x)=9 x^{8}\right)
\end{aligned}
$$

2. (Price elasticity of demand)


Figure 1: Market demand model
A tech company, Lemon Inc., plans to release a new cell phone, the piePhone 15. Prior to release, Lemon runs a market study that estimates the number of units of the piePhone 15 that they can expect to sell at a given price point (the "customer demand" graph). Lemon can see that customer demand ( $q(x)$
million units sold at a price of $x$ hundred dollars per unit) is a continuous function (over the interval $[2,11])$, since it satisfies the vertical line test and the pen-to-paper test.
Obviously, Lemon's revenue from selling $q(x)$ million units at $x$ hundred dollars each is $x \cdot q(x)$ hundred million dollars. That is, their revenue function is:

$$
r(x)=x \cdot q(x) \quad \text { hundred million dollars. }
$$

(a) Lemon wants to know the marginal revenue* (i.e. the derivative $r^{\prime}$ of the revenue function $r$ ) in terms of the marginal demand (i.e. the derivative $q^{\prime}$ of the demand function $q$ ). Show that we can write the marginal revenue function as:

$$
r^{\prime}(x)=q(x) \cdot\left(1+\frac{x}{q(x)} \cdot q^{\prime}(x)\right)
$$

Remark: The function $E_{d}(x)=\frac{x}{q(x)} \cdot q^{\prime}(x)$ is called the price elasticity of demand ${ }^{\dagger}$ (that some of you may have seen in an economics class). It is extremely important in economics - it measures how sensitive demand is to changes in price. $E_{d}(x)$ is almost always a negative real number (i.e. $\left.E_{d}(x)<0\right)$. If $E_{d}(x)=-2$, it means that a $10 \%$ increase in price will result in a $20 \%$ decrease in demand.
(b) Lemon hires some pretty solid economists who figure out that the demand function $q$ is given by:

$$
q(x)=\frac{90}{x^{2}+6}
$$

i. Calculate $q^{\prime}(x), E_{d}(x)$ and $r^{\prime}(x)$.
ii. Calculate $r^{\prime}(2)$. Is revenue increasing or decreasing at a price point of $\$ 200$ per unit?
iii. Calculate $r^{\prime}(6)$. Is revenue increasing or decreasing at a price point of $\$ 600$ per unit?
iv. Find a price point $a$ such that the revenue $r(a)$ is maximum.
v. What is $E_{d}(6)$ ? At a price point of $\$ 600$ per unit, how much (in \%) will demand increase or decrease if the price increases by $7 \%$ ?

## Solution:

(a) Lemon's revenue function is $r(x)=x \cdot q(x)$. Using the rules for derivatives, the rate of change of revenue is

$$
\begin{aligned}
r^{\prime}(x) & =\frac{d}{d x}[x \cdot q(x)] \\
& =\left(\frac{d}{d x}[x]\right) \cdot q(x)+x \cdot q^{\prime}(x) \quad \text { (using the product rule) } \\
& =1 \cdot q(x)+x \cdot q^{\prime}(x) \\
& =q(x) \cdot\left(1+\frac{x}{q(x)} \cdot q^{\prime}(x)\right)
\end{aligned}
$$

[^0](b) i. We can use the rules for derivatives to calculate
\[

$$
\begin{aligned}
q^{\prime}(x) & =\frac{d}{d x}\left[\frac{90}{x^{2}+6}\right] \\
& =\frac{\left(\frac{d}{d x}[90]\right)\left(x^{2}+6\right)-90 \cdot \frac{d}{d x}\left[x^{2}+6\right]}{\left(x^{2}+6\right)^{2}} \quad \text { (using the quotient rule) } \\
& =\frac{0 \cdot\left(x^{2}+6\right)-90 \cdot(2 x+0)}{\left(x^{2}+6\right)^{2}} \\
& =-\frac{180 x}{\left(x^{2}+6\right)^{2}}
\end{aligned}
$$
\]

Now that we know $q(x)$ and $q^{\prime}(x)$, we can calculate $r^{\prime}(x)$ as:

$$
\begin{aligned}
r^{\prime}(x) & =q(x)+x \cdot q^{\prime}(x) \\
& =\frac{90}{x^{2}+6}+x \cdot\left(-\frac{180 x}{\left(x^{2}+6\right)^{2}}\right) \\
& =\frac{90}{x^{2}+6}-\frac{180 x^{2}}{\left(x^{2}+6\right)^{2}} \\
& =\frac{90\left(x^{2}+6\right)-180 x^{2}}{\left(x^{2}+6\right)^{2}} \\
& =\frac{90\left(x^{2}+6-2 x^{2}\right)}{\left(x^{2}+6\right)^{2}} \\
& =\frac{90\left(6-x^{2}\right)}{\left(x^{2}+6\right)^{2}}
\end{aligned}
$$

ii. We have

$$
r^{\prime}(2)=\frac{90\left(6-(2)^{2}\right)}{\left((2)^{2}+6\right)^{2}}=\frac{90(6-4)}{(4+6)^{2}}=\frac{180}{100}=1.8
$$

Since $r^{\prime}(2)>0$, Lemon's revenue (the function $r$ ) is increasing at a price point of $\$ 200$ per unit.
iii. We have

$$
r^{\prime}(6)=\frac{90\left(6-(6)^{2}\right)}{\left((6)^{2}+6\right)^{2}}=\frac{90(-30)}{\left(42^{2}\right)}=-\frac{75}{49}
$$

Since $r^{\prime}(6)<0$, Lemon's revenue is decreasing at a price point of $\$ 600$ per unit. iv. To find a price point $a$ such that $r$ has a maximum at $a$, we proceed as follows:

- First we solve $r^{\prime}(x)=0$ to find the critical points of $r$ :

$$
\begin{array}{rlrl} 
& r^{\prime}(x) & =0 \\
& = \\
\text { i.e. } \quad \frac{90\left(6-x^{2}\right)}{\left(x^{2}+6\right)^{2}} & =0 \\
& \text { i.e. } \quad 90\left(6-x^{2}\right) & =0 \quad\left(\text { multiplying both sides by }\left(x^{2}+6\right)^{2}\right) \\
& \text { i.e. } \quad x^{2} & =6 \\
& \text { i.e. } \quad x & =\sqrt{6} \quad \text { or } \quad x=-\sqrt{6} .
\end{array}
$$

Hence, if the revenue function $r$ has a maximum, it must be at a price point of $\sqrt{6}$ hundred dollars or a price point of $-\sqrt{6}$ hundred dollars (unlikely, since in this situation, Lemon Inc. is paying customers to buy the piePhone 15).

- Next, we calculate $r^{\prime \prime}(x)$ and check whether $r^{\prime}(x)$ is decreasing (i.e. $\left.r^{\prime \prime}(x)<0\right)$ for each of the solutions from the previous step. We have

$$
\begin{aligned}
r^{\prime \prime}(x) & =\frac{d}{d x}\left[\frac{90\left(6-x^{2}\right)}{\left(x^{2}+6\right)^{2}}\right] \\
& =\frac{\frac{d}{d x}\left[90\left(6-x^{2}\right)\right] \cdot\left(x^{2}+6\right)^{2}-90\left(6-x^{2}\right) \cdot \frac{d}{d x}\left[\left(x^{2}+6\right)^{2}\right]}{\left(x^{2}+6\right)^{4}} \quad \text { (using the quotient rule) } \\
& =\frac{(-180 x)\left(x^{2}+6\right)^{2}-90\left(6-x^{2}\right)\left(2\left(x^{2}+6\right) \cdot 2 x\right)}{\left(x^{2}+6\right)^{4} 3} \quad \text { (using the product and chain rules) } \\
& =\frac{-180 x\left(\left(x^{2}+6\right)-2\left(6-x^{2}\right)\right)}{\left(x^{2}+6\right)^{3}} \\
& =\frac{-180 x\left(x^{2}+6-12+2 x^{2}\right)}{\left(x^{2}+6\right)^{3}} \\
& =\frac{-180 x\left(3 x^{2}-6\right)}{\left(x^{2}+6\right)^{3}}
\end{aligned}
$$

Hence we can calculate $r^{\prime \prime}(\sqrt{6})$ and $r^{\prime \prime}(-\sqrt{6})$ as follows.

$$
r^{\prime \prime}(\sqrt{6})=\frac{-180(\sqrt{6})(3(6)-6)}{(6+6)^{3}}=\frac{-180(\sqrt{6})(12)}{12^{3}}
$$

Hence $\quad r^{\prime \prime}(\sqrt{6})<0$.

$$
r^{\prime \prime}(-\sqrt{6})=\frac{-180(-\sqrt{6})(3(6)-6)}{(6+6)^{3}}=\frac{180(\sqrt{6})(12)}{12^{3}}
$$

Hence $\quad r^{\prime \prime}(-\sqrt{6})>0$.
Since $r^{\prime}(x)$ is decreasing when $x=\sqrt{6}$ and increasing when $x=-\sqrt{6}$, we know that $r$ has a local maximum at $x=\sqrt{6}$ and a local minimum at $x=-\sqrt{6}$.

- Finally, since $x=\sqrt{6}$ is the only local maximum of $r$, we can conclude that the revenue is maximized at a price point of $\sqrt{6}$ hundred dollars (approx. \$244.94).
v. We can calculate the price elasticity of demand at a price point of $x$ hundred dollars per unit (i.e. the function $\left.E_{d}(x)\right)$ as follows.

$$
\begin{aligned}
E_{d}(x) & =\frac{x}{q(x)} \cdot q^{\prime}(x) \\
& =x \cdot \frac{\left(x^{2}+6\right)}{90} \cdot\left(-\frac{180 x}{\left(x^{2}+6\right)^{2}}\right) \\
& =x \cdot\left(-\frac{2 x}{x^{2}+6}\right) \\
& =-\frac{2 x^{2}}{x^{2}+6}
\end{aligned}
$$

Hence we have

$$
E_{d}(6)=-\frac{2(6)^{2}}{(6)^{2}+6}=-\frac{2 \cdot 6 \cdot 6}{6 \cdot 7}=-\frac{12}{7}
$$

So, at a price point of $\$ 600$ per unit, if the price increases by $7 \%$, the demand will change by

$$
E_{d}(6) \cdot 7=\left(-\frac{12}{7}\right) \cdot 7=-12 \%
$$

In other words, the demand will decrease by $12 \%$.
3. (Variable interest rates.)

A lender (e.g. a bank) proposes two 20-year loans of $\$ 1.5$ million to a borrower (e.g. a homebuyer). The borrower can either pay compound interest at an interest rate of $x$ percent, or simple interest at an interest rate of $2 x$ percent. So, if the borrower chooses to pay compound interest at a rate of $x$ percent, the amount they have to pay after 20 years is

$$
f(x)=1.5 \cdot\left(1+\frac{x}{100}\right)^{20} \quad \text { million dollars. }
$$

If the borrower chooses to pay simple interest, the amount they have to pay after 20 years is

$$
g(x)=1.5 \cdot\left(1+20 \cdot \frac{2 x}{100}\right) \quad \text { million dollars. }
$$

(a) If the compound interest rate is 4 percent, how much would the borrower pay after 20 years if they chose the loan with:
i. Compound interest.
ii. Simple interest.

Which loan makes more sense for the homebuyer?
(b) If the compound interest rate is 8 percent, how much would the borrower pay after 20 years if they choose the loan with:
i. Compound interest.
ii. Simple interest.

Which loan makes more sense for the homebuyer?
(c) The difference between the two loans is measured by the amount $d(x)=g(x)-f(x)$.
i. Calculate the rate of change of the difference between the two loans at a compound interest rate of 2 percent.
ii. Calculate the rate of change of the difference between the two loans at a compound interest rate of 4 percent.
iii. At what compound interest rate is the difference between the two loans maximum?

## Solution:

(a) If the compound interest rate is 4 percent, we are in the case where $x=4$.
i. If the borrower chooses the loan with compound interest, they would pay

$$
f(4)=1.5 \cdot\left(1+\frac{4}{100}\right)^{20}=3.287 \text { million dollars. }
$$

ii. If the borrower chooses the loan with simple interest, they would pay

$$
g(4)=1.5 \cdot\left(1+20 \cdot \frac{2 \cdot 4}{100}\right)=3.9 \text { million dollars. }
$$

Since the amount paid on the loan with compound interest at 4 percent is less than the amount paid on the loan with simple interest at 8 percent, the loan with compound interest makes more sense for the borrower.
(b) If the compound interest rate is 8 percent, we are in the case where $x=8$.
i. If the borrower chooses the loan with compound interest, they would pay

$$
f(8)=1.5 \cdot\left(1+\frac{8}{100}\right)^{20}=6.991 \quad \text { million dollars. }
$$

ii. If the borrower chooses the loan with simple interest, they would pay

$$
g(4)=1.5 \cdot\left(1+20 \cdot \frac{2 \cdot 8}{100}\right)=6.3 \text { million dollars. }
$$

Since the amount paid on the loan with compound interest at 4 percent is more than the amount paid on the loan with simple interest at 8 percent, the loan with simple interest makes more sense for the borrower.
(c) The rate of change of the difference function $d$ is its derivative, which is $d^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x)$. We calculate the derivative of $g$ as

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left[1.5 \cdot\left(1+20 \cdot \frac{2 x}{100}\right)\right] \\
& =1.5 \cdot \frac{d}{d x}\left[1+20 \cdot \frac{2 x}{100}\right] \\
& =1.5 \cdot\left(0+20 \cdot \frac{2}{100}\right)=\frac{6}{10} .
\end{aligned}
$$

To calculate the derivative of $f$, we recognise that $f(x)$ can be written as

$$
f(x)=1.5 \cdot\left(1+\frac{x}{100}\right)^{20}=1.5 \cdot(k(x))^{20}=m(k(x))=(m \circ k)(x)
$$

where $m(x)=1.5 \cdot x^{20}$ and $k(x)=1+\frac{x}{100}$.
Hence we can find the derivative of $f$ using the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =m^{\prime}(k(x)) \cdot k^{\prime}(x) \\
& =1.5 \cdot 20 \cdot(k(x))^{19} \cdot \frac{1}{100} \quad \text { since } m^{\prime}(x)=1.5 \cdot 20 \cdot x^{19} \text { and } k^{\prime}(x)=\frac{1}{100} \\
& =30 \cdot\left(1+\frac{x}{100}\right)^{19} \cdot \frac{1}{100} \\
& =\frac{3}{10} \cdot\left(1+\frac{x}{100}\right)^{19}
\end{aligned}
$$

Finally, we calculate $d^{\prime}(x)$ as

$$
\begin{aligned}
d^{\prime}(x) & =g^{\prime}(x)-f^{\prime}(x) \\
& =\frac{6}{10}-\frac{3}{10} \cdot\left(1+\frac{x}{100}\right)^{19} \\
& =\frac{3}{10} \cdot\left(2-\left(1+\frac{x}{100}\right)^{19}\right)
\end{aligned}
$$

i. We have

$$
d^{\prime}(2)=\frac{3}{10} \cdot\left(2-\left(1+\frac{2}{100}\right)^{19}\right)=0.163 \quad \text { million dollars per percent }
$$

ii. We have

$$
d^{\prime}(4)=\frac{3}{10} \cdot\left(2-\left(1+\frac{4}{100}\right)^{19}\right)=-0.032 \quad \text { million dollars per percent }
$$

iii. Any real number $a$ is a local maximum of the difference function $d$ exactly when $d^{\prime}(a)=0$ and $d^{\prime \prime}(a)<0$.
Step 1: We find the critical points of the function $d$ by solving the equation $d^{\prime}(x)=0$.

$$
\begin{array}{ll} 
& d^{\prime}(x)=0 \\
\text { i.e. } & g^{\prime}(x)-f^{\prime}(x)=0 \\
\text { i.e. } & f^{\prime}(x)=g^{\prime}(x) \\
\text { i.e. } & \frac{3}{10} \cdot\left(1+\frac{x}{100}\right)^{19}=\frac{6}{10} \\
\text { i.e. } & \frac{3}{10} \cdot\left(1+\frac{x}{100}\right)^{19}=2 \\
\text { i.e. } & 1+\frac{x}{100}=2^{1 / 19} \\
\text { i.e. } & x=100 \cdot\left(2^{1 / 19}-1\right) \\
\text { i.e. } & x=3.715
\end{array}
$$

Step 2: The second derivative of $d$ is the derivative of $d^{\prime}$, which we calculate as

$$
\begin{aligned}
d^{\prime \prime}(x) & =g^{\prime \prime}(x)-f^{\prime \prime}(x) \\
& =\frac{d}{d x}\left[\frac{6}{10}\right]-\frac{d}{d x}\left[\frac{3}{10} \cdot\left(1+\frac{x}{100}\right)^{19}\right] \\
& =0-\frac{3}{10} \frac{d}{d x}\left[\left(1+\frac{x}{100}\right)^{19}\right] \\
& \text { Using the chain rule, } \frac{d}{d x}\left[\left(1+\frac{x}{100}\right)^{19}\right]=19 \cdot\left(1+\frac{x}{100}\right)^{18} \cdot \frac{1}{100} \\
\text { So } \quad d^{\prime \prime}(x) & =-\frac{3}{10} \cdot 19 \cdot\left(1+\frac{x}{100}\right)^{18} \cdot \frac{1}{100}
\end{aligned}
$$

Therefore, $d^{\prime \prime}(3.715)<0($ since $3.715>0)$.
Hence we can conclude that $x=3.715$ is the only local maximum of $d$. Therefore, the difference between the two loans is maximum when the compound interest rate is 3.715 percent.


[^0]:    *Wikipedia article on marginal revenue.
    ${ }^{\dagger}$ Wikipedia article on the price elasticity of demand.

