Math 150 03 — Calculus I

Homework assignment 5

Due: Wednesday, November 1, 2023

1. (a) Find - [y] in terms of z and y if we have that z - In(y) + y* = 3 - In(2).
(b) Use implicit differentiation to find the tangent line to the curve x = y° — 5y +4y at the point (0, 1).
(c) Use implicit differentiation to find the tangent line to the curve sin(z + y) + cos(x — y) =1 at the

point (3, 5).

Solution:

(a) We are assuming that y(x) is an implicit function of x, and the question asks us to find the
derivative y'(z) in terms of x and y(x). Differentiating both sides of the given equation, we

have:
13 In(a)) = 2 o In(y(e) + (o))
ie. 3. % = % [ - In(y(x))] + % [y(2)?] (using the sum and constant multiple rules)
. 3 d 2 : :
ie. P (1 “In(y(z)) + 2 - s [ln(y(x))]> +3y(z)” - y'(x) (using product and chain rules
ie. % =1In(y(z)) + ﬁ ' () 4+ 3y(z)? -y (z) (using the chain rule)
e 2oy =) (s + e
: d . |2—In(y)
ie. e [y] = W :

(b) The implicit function theorem tells us that if we zoom into a small neighborhood of the point
(0,1), then the curve given by x = y® — 53 + 4y looks like a function. (That is, it satisfies the
vertical line test.) We can verify this using a graphing calculator (like Desmos or Geogebra).
Below on the left is the graph of the curve, and on the right is the same graph but zoomed into
a neighborhood of the point (0, 1).
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Therefore, we can implicitly assume y to be some function y(z) (in the neighborhood of the
point (0,1)) and differentiate both sides of the equation of the curve to get

d d 5 3
o) = 0 [yl@)® — 5y(a)® + dy(a)
ie. 1= 5y(x)*y (z) — 15y(x)%y (x) + 4y (2) (using the sum and chain rules)

1
Sy(x)* — 15y(z)? + 4

ie.  y(z)=

Since at the point (0,1), we have x = 0 and y(0) = 1, we have

'(0) = .
Y = By (0)% — 159(0)2 + 4
o
T 1-15+4+4
1
-~ =01
10

Therefore, the slope of the tangent line to the curve at the point (0,1) is 3'(0) = —0.1. Since
we know the slope of the line and a point on it (namely (0,1)), the equation of the line (in

point-slope form) is ‘y —1=-0.1(x —0) ‘ In standard form, the equation of the tangent line

is|ly=-01lz+1|

(¢) The implicit function theorem tells us that if we zoom into a small neighborhood of the point
(%, %), then the curve given by sin(z + y) + cos(z — y) = 1 looks like a function. (That is, it

satisfies the vertical line test.) We can verify this using a graphing calculator (like Desmos or
Geogebra). Below on the left is the graph of the curve, and on the right is the same graph but

zoomed into a neighborhood of the point (5, 7).

Therefore, we can implicitly assume y to be some function y(z) (in the neighborhood of the

point (7, %)) and differentiate both sides of the equation of the curve to get
9 in(z + y(2)) + cos(z — y(x))] = = [1
dz Y Y dx

d

[z +y(@)] —sin(z — y(z)) —— [ — y(z)

T (using the sum and chain rules)

ie. cos(x + y(x))% ]
ie.  cos(z+y(x))(1+y (z)) —sin(z — y(z))(1 - y'(z))
Le.  y/(z)(cos(z +y(z)) +sin(z — y(r)))

)

0
0 (using the sum rule)

in (x)) — cos(x + y(x))
. ) — sin(z — y(x)) — cos(z + y(x))
- v (cos(z + y(z)) + sin(z — y(z))

sin(z — y




Since at the point (7, 3), we have x = § and y(5) = 7, we have

S (T sin(§ — ) —cos(§ + %)
V(5) = otz T Doz 5)
)

_ sin(0) — cos(m)
~ cos() + sin(0)
0y,
(-1)+0
Therefore, the slope of the tangent line to the curve at the point (7, %) is 4/(5) = —1. Since
we know the slope of the line and a point on it (namely (7, %)), the equation of the line (in
point-slope form) is |y — g =-1 (m — g) . In standard form, the equation of the tangent line

2. Use L’Hopital’s rule where appropriate to find the following limits.
In(2
a) lim 2n (%)
z—4 4 — 16
. 1—cos(7x)
b) lim ——=
() 2501 — cos(3x)
1

4T 3T
(c) lim Q=1

Solution:

(a) We proceed by steps.
1. By direct substitution, we have that
In(%)  I($) 0

o122 16 42-16 0

which is a nonsense answer (an indeterminate form).

2. Next, if f(z) = In(%) = In(z) —In(4) (the numerator of our expression), then f'(z) = 1. If
g(z) = 22 — 16 (the denominator of our expression), we have that ¢’(z) = 2z. Therefore,
both derivatives exist.

3. We can verify that ¢’(z) = 2x # 0 whenever z € (4—h,4)U(4,4+h) for some small h > 0
(i.e. whenever z is close to, but not equal to 4).

4. Therefore we can apply ’'Hopital’s rule to %, which tells us that

2oh g(a)  ami g'(x)

f@) )

(b) We proceed by steps.

1. By direct substitution,
lim 1—cos(7z) ~1—cos(0) 0
201 —cos(3z) 1—rcos(0) 0O

which is a nonsense answer (an indeterminate form).




2. Next, if f(x) = 1 — cos(7x) (the numerator of our expression), then f'(x) = 7sin(7z)
(using the chain rule). If g(x) = 1 — cos(3z) (the denominator of our expression), we have
that ¢’(z) = 3sin(3x) (also using the chain rule). Therefore, both derivatives exist.

3. We can verify that ¢'(z) = 3sin(3z) # 0 whenever z € (—h,0) U (0,h) for some small
h > 0 (i.e. whenever x is close to, but not equal to 0).

4. Therefore we can apply I’'Hopital’s rule to %, which tells us that

li =
250 g(z) =—0g'(x) =2—03sin(3x)

flz) _ lim 1 (x) lim 7sin(7z)
(

. o 75in(0 . .
5. If we try direct substitution, we get 3:2%03 = 3, which is once again a nonsense answer.

6. We can repeat the process, by calculating f”(z) = 49 cos(7x) (once again using the chain
rule), and ¢”(x) = 9cos(3z) (also using the chain rule).

7. We can verify that ¢”(z) = 9cos(3z) # 0 whenever x € (—h,0) U (0,h) for some small
h > 0 (i.e. whenever z is close to, but not equal to 0).

8. Therefore we can reapply I’Hopital’s rule to 5 :E;;, which tells us that

- f(x) I f(x) . 49cos(7z)  49cos(0) |49

=0 ¢'(z) T 250 g"(x) T 250 9cos(3r)  9cos(0) | 9

(c) We proceed by steps.
1. By direct substitution,

o4t —3*—-1 4'-3'—-1 0
lim = —
=1 x2—1 12 -1 0

which is a nonsense answer (an indeterminate form).

2. Next, if f(z) = 4*—3%—1 (the numerator of our expression), then f’(x) = 4% In(4)—3% In(3)
(using the rule for exponential functions). If g(z) = 2* — 1 (the denominator of our
expression), we have that ¢'(z) = 2z. Therefore, both derivatives exist.

3. We can verify that ¢'(z) = 2z # 0 whenever z € (1—h,1)U(1,1+h) for some small h > 0
(i.e. whenever z is close to, but not equal to 1).

4. Therefore we can apply I’'Hopital’s rule to g E:g, which tells us that

g @) _ o F(@) o 47In(4) —37In(3) | 41n(4) — 31n(3)
z—1 g(x) z=1 g'(x) =1 2x 2

(L’Hopital’s rule at +00)
When z — a (where a is any real number or +o00), L’Hopital’s rule states that if f(z) and g(z) both
approach 0 or both approach +oco, then
!/
o f@) @)

1m
z—a g(aj) z—a g’(gj)

provided the right hand limit exists, and provided ¢’(z) # 0 whenever = € (a — h,a)U (a,a+ h) for some
h >0 (or, if a = oo, whenever z € (h,00) or (—oo, h) as the case may be).



3. Evaluate the following limits, using L’Ho6pital’s rule as appropriate.

(a) lim

1523

z—00 2%

(b) lim

e+

00 €% 4 g2

1.

10.

Solution:

(a) We proceed by steps.

By direct substitution,
. 1523 0
lim S =
Tz—o00 e<T o0

which is a nonsense answer (an indeterminate form).

. Next, if f(z) = 152® (the numerator of our expression), then f/(x) = 452 (using the rule

for exponential functions). If g(z) = €2* (the denominator of our expression), we have
that ¢/(z) = 2e2® (using the chain rule). Therefore, both derivatives exist.

We can verify that ¢'(x) = 2€2* # 0 whenever x € (h,00) for some large enough h > 0
(i.e. whenever x is bigger than some number h).

Therefore we can apply I’'Hopital’s rule to g Ezg , which tells us that

/ 2
TG N N A G L
T— 00 g(aj T— 00 g’(aj) r—00 2e2%

. By direct substitution we get 22, which is once again a nonsense answer (an indeterminate

form).

6. We can repeat the process by calculating f”(x) = 90x and g (x) = 4e%*.
7. Since g"(z) = 4€** # 0 for all # € (h,o0) for some large enough h > 0, we can apply

I’Hopital’s rule to get
! 1"
S ) %0

T—00 g’(x) B zlﬁnolo g”(x) - r—00 4e2T

By direct substitution we get 2%, which is once again a nonsense answer (an indeterminate
form).

We can repeat the process by calculating f"(z) = 90 and g’ (x) = 8¢*2.
Since ¢"'(z) = 4€?* # 0 for all x € (h,o0) for some large enough h > 0, we can apply
I’Hépital’s rule to get

f”(:z:) s f’”(a:) L 90 B
T—00 g”(x) o xlggc g”’(x) o aclggo 8e2z @

since 90 is a constant, and since € — 0o as & — 00.

(b) We proceed by steps.

1. By direct substitution,
. e’ +ux o0
lim = —
z—o0 €% + 12 00

which is a nonsense answer (an indeterminate form).




2. Next, if f(z) = e* + = (the numerator of our expression), then f/'(z) =e* + 1. If g(z) =
e® + 22 (the denominator of our expression), we have that ¢/(z) = e* + 2z. Therefore,
both derivatives exist.

3. We can verify that ¢’(z) = e® + 2z # 0 whenever x € (h, 00) for some large enough h > 0
(i.e. whenever z is bigger than some number h).

4. Therefore we can apply I’'Hopital’s rule to ﬁ E;;, which tells us that

tim L&) gy L@, L

z—oo g(x) z—o0 g’ () T a0 €T + 21

5. By direct substitution we get 22, which is once again a nonsense answer (an indeterminate
form).

6. We can repeat the process by calculating f”(x) = e* and ¢"(x) = e® + 2.
7. Since ¢"(x) = e* + 2 # 0 for all € (h,00) for some large enough h > 0, we can apply
I’Hopital’s rule to get

o f@) o =) e’
lim = lim = lim
T—00 g’(x) T—00 g”(x) z—o00 €T 4+ 2

8. By direct substitution we get <2, which is once again a nonsense answer (an indeterminate
form).

9. We can repeat the process by calculating f"’(z) = e® and ¢"'(x) = e”.

10. Since ¢""(z) = €® # 0 for all © € (h,00) for some large enough h > 0, we can apply
I’Hopital’s rule to get

1 " x
fm L8 g L@ €y )

z—oo g''(x) w00 g (x) 200 €® oo

4. We say that a function ¢ dominates a function f when we have lim f(z) = oo, lim g(x) = oo, and
T—r00 Tr—r00

(a) Which function dominates the other: In(z) or /z?
(b) Which function dominates the other: In(x) or 2'/™? (n is any natural number bigger than 1)

(¢) Explain why e” dominates every polynomial.

Solution:

(a) We know that zlgrolo In(z) = oo and zlgrolo\/i = oo. We need to figure out if zl;ngo hi/(g) =0 or if
Jim 2y =0
To find lim M, we proceed by steps.

z—oo VI

1. Direct substitution gives us 22, which is a nonsense answer.

2. We can calculate % [In(z)] = 1 and % [Vz] = ﬁ Therefore the derivatives of both the

numerator and denominator exist.

3. We can verify that % [Vz] = ﬁ # 0 when z € (h, 00) for some large enough h > 0. Therefore
we can apply 'Hopital’s rule.




4. Applying I’'Hopital’s rule to 1’:};), we get

1
. In(x . = . .
lim ():hm ’{ = lim — = lim — =0
z—00 /T T—00 NG 00 I z—o00 A/
xT

since 2 is a constant and since 1/z — 0o as x — 00.

Therefore ‘ vz dominates In(z). ‘

(b) We know that lim In(z) = oo and lim z# = co. We need to figure out if lim @) — o or if
T—00 T—00 r—00 xn
AT Tty = O

To find lim ln(f), we proceed by steps.

T—00 g

1. Direct substitution gives us 22, which is a nonsense answer.

2. We can calculate % [In(z)] = L = 27! and £ {xﬂ = %x%’l. Therefore the derivatives of

both the numerator and denominator exist.
3. We can verify that d% zw| = %x%_l # 0 when z € (h,00) for some large enough h > 0.

Therefore we can apply I’'Hopital’s rule.

4. Applying I’'Hopital’s rule to ln(f), we get

Tn

. In(z) . x 1 . n . n

lim — = lim —— = lim ———— = lim — =0

T—00 z—oo Lon
n

. . . 1
since n is a constant and since x» — 00 as T — 00.

Therefore | z# dominates In(z).

(c) Any polynomial function is of the form p(z) = ag +a1x +asz? +. ..+ a,a™, where ag, a1, as, ..., a,
are all constants. When we differentiate p, we get p'(z) = a; + 2a27 + 3az2® + ... +n - apa™ L.
Notice that the constant ag has disappeared. Therefore, when p(x) is differentiated n + 1 times,
every term disappears and we get p("*1)(z) = 0 (i.e. the (n + 1)’th derivative of p is 0).

Now if f(z) = e®, we know that f(*D(z) = e (the (n + 1)’th derivative of e® is always e®).
Therefore applying 'Hopital’s rule (n + 1) times to Z éf (where p(z) is any polynomial) gives us

lim % = 0. Therefore e* dominates every polynomial.
Tr—r 00




