
Math 150 03 – Calculus I

Homework assignment 5

Due: Wednesday, November 1, 2023

1. (a) Find d
dx [y] in terms of x and y if we have that x · ln(y) + y3 = 3 · ln(x).

(b) Use implicit differentiation to find the tangent line to the curve x = y5−5y3+4y at the point (0, 1).

(c) Use implicit differentiation to find the tangent line to the curve sin(x+ y) + cos(x− y) = 1 at the
point (π2 ,

π
2 ).

Solution:

(a) We are assuming that y(x) is an implicit function of x, and the question asks us to find the
derivative y′(x) in terms of x and y(x). Differentiating both sides of the given equation, we
have:

d

dx
[3 · ln(x)] = d

dx

[
x · ln(y(x)) + y(x)3

]
i.e. 3 · 1

x
=

d

dx
[x · ln(y(x))] + d

dx

[
y(x)3

]
(using the sum and constant multiple rules)

i.e.
3

x
=

(
1 · ln(y(x)) + x · d

dx
[ln(y(x))]

)
+ 3y(x)2 · y′(x) (using product and chain rules)

i.e.
3

x
= ln(y(x)) +

1

y(x)
· y′(x) + 3y(x)2 · y′(x) (using the chain rule)

i.e.
3

x
− ln(y(x)) = y′(x) ·

(
1

y(x)
+ 3y(x)2

)

i.e.
d

dx
[y] =

3
x − ln(y)
1
y + 3y2

.

(b) The implicit function theorem tells us that if we zoom into a small neighborhood of the point
(0, 1), then the curve given by x = y5 − 5y3 + 4y looks like a function. (That is, it satisfies the
vertical line test.) We can verify this using a graphing calculator (like Desmos or Geogebra).
Below on the left is the graph of the curve, and on the right is the same graph but zoomed into
a neighborhood of the point (0, 1).
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Therefore, we can implicitly assume y to be some function y(x) (in the neighborhood of the
point (0, 1)) and differentiate both sides of the equation of the curve to get

d

dx
[x] =

d

dx

[
y(x)5 − 5y(x)3 + 4y(x)

]
i.e. 1 = 5y(x)4y′(x)− 15y(x)2y′(x) + 4y′(x) (using the sum and chain rules)

i.e. y′(x) =
1

5y(x)4 − 15y(x)2 + 4

Since at the point (0, 1), we have x = 0 and y(0) = 1, we have

y′(0) =
1

5y(0)4 − 15y(0)2 + 4

=
1

1− 15 + 4

= − 1

10
= −0.1

Therefore, the slope of the tangent line to the curve at the point (0, 1) is y′(0) = −0.1. Since
we know the slope of the line and a point on it (namely (0, 1)), the equation of the line (in

point-slope form) is y − 1 = −0.1(x− 0) . In standard form, the equation of the tangent line

is y = −0.1x+ 1 .

(c) The implicit function theorem tells us that if we zoom into a small neighborhood of the point
(π2 ,

π
2 ), then the curve given by sin(x + y) + cos(x − y) = 1 looks like a function. (That is, it

satisfies the vertical line test.) We can verify this using a graphing calculator (like Desmos or
Geogebra). Below on the left is the graph of the curve, and on the right is the same graph but
zoomed into a neighborhood of the point (π2 ,

π
2 ).

Therefore, we can implicitly assume y to be some function y(x) (in the neighborhood of the
point (π2 ,

π
2 )) and differentiate both sides of the equation of the curve to get

d

dx
[sin(x+ y(x)) + cos(x− y(x))] =

d

dx
[1]

i.e. cos(x+ y(x))
d

dx
[x+ y(x)]− sin(x− y(x))

d

dx
[x− y(x)] = 0 (using the sum and chain rules)

i.e. cos(x+ y(x))(1 + y′(x))− sin(x− y(x))(1− y′(x)) = 0 (using the sum rule)

i.e. y′(x)(cos(x+ y(x)) + sin(x− y(x))) = sin(x− y(x))− cos(x+ y(x))

i.e. y′(x) =
sin(x− y(x))− cos(x+ y(x))

(cos(x+ y(x)) + sin(x− y(x))
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Since at the point (π2 ,
π
2 ), we have x = π

2 and y(π2 ) =
π
2 , we have

y′
(π
2

)
=

sin(π2 − π
2 )− cos(π2 + π

2 )

(cos(π2 + π
2 ) + sin(π2 − π

2 )

=
sin(0)− cos(π)

cos(π) + sin(0)

=
0− (−1)

(−1) + 0
= −1

Therefore, the slope of the tangent line to the curve at the point (π2 ,
π
2 ) is y′(π2 ) = −1. Since

we know the slope of the line and a point on it (namely (π2 ,
π
2 )), the equation of the line (in

point-slope form) is y − π

2
= −1

(
x− π

2

)
. In standard form, the equation of the tangent line

is y = −x+ π .

2. Use L’Hôpital’s rule where appropriate to find the following limits.

(a) lim
x→4

ln(x4 )

x2 − 16

(b) lim
x→0

1− cos(7x)

1− cos(3x)

(c) lim
x→1

4x − 3x − 1

x2 − 1

Solution:

(a) We proceed by steps.

1. By direct substitution, we have that

lim
x→4

ln(x4 )

x2 − 16
=

ln( 44 )

42 − 16
=

0

0

which is a nonsense answer (an indeterminate form).

2. Next, if f(x) = ln(x4 ) = ln(x)− ln(4) (the numerator of our expression), then f ′(x) = 1
x . If

g(x) = x2 − 16 (the denominator of our expression), we have that g′(x) = 2x. Therefore,
both derivatives exist.

3. We can verify that g′(x) = 2x ̸= 0 whenever x ∈ (4−h, 4)∪ (4, 4+h) for some small h > 0
(i.e. whenever x is close to, but not equal to 4).

4. Therefore we can apply l’Hôpital’s rule to f(x)
g(x) , which tells us that

lim
x→4

f(x)

g(x)
= lim

x→4

f ′(x)

g′(x)
= lim

x→4

1
x

2x
= lim

x→4

1

2x2
=

1

2(42)
=

1

32

(b) We proceed by steps.

1. By direct substitution,

lim
x→0

1− cos(7x)

1− cos(3x)
=

1− cos(0)

1− cos(0)
=

0

0

which is a nonsense answer (an indeterminate form).
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2. Next, if f(x) = 1 − cos(7x) (the numerator of our expression), then f ′(x) = 7 sin(7x)
(using the chain rule). If g(x) = 1− cos(3x) (the denominator of our expression), we have
that g′(x) = 3 sin(3x) (also using the chain rule). Therefore, both derivatives exist.

3. We can verify that g′(x) = 3 sin(3x) ̸= 0 whenever x ∈ (−h, 0) ∪ (0, h) for some small
h > 0 (i.e. whenever x is close to, but not equal to 0).

4. Therefore we can apply l’Hôpital’s rule to f(x)
g(x) , which tells us that

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

7 sin(7x)

3 sin(3x)

5. If we try direct substitution, we get 7 sin(0)
3 sin(0) =

0
0 , which is once again a nonsense answer.

6. We can repeat the process, by calculating f ′′(x) = 49 cos(7x) (once again using the chain
rule), and g′′(x) = 9 cos(3x) (also using the chain rule).

7. We can verify that g′′(x) = 9 cos(3x) ̸= 0 whenever x ∈ (−h, 0) ∪ (0, h) for some small
h > 0 (i.e. whenever x is close to, but not equal to 0).

8. Therefore we can reapply l’Hôpital’s rule to f ′(x)
g′(x) , which tells us that

lim
x→0

f ′(x)

g′(x)
= lim

x→0

f ′′(x)

g′′(x)
= lim

x→0

49 cos(7x)

9 cos(3x)
=

49 cos(0)

9 cos(0)
=

49

9

(c) We proceed by steps.

1. By direct substitution,

lim
x→1

4x − 3x − 1

x2 − 1
=

41 − 31 − 1

12 − 1
=

0

0

which is a nonsense answer (an indeterminate form).

2. Next, if f(x) = 4x−3x−1 (the numerator of our expression), then f ′(x) = 4x ln(4)−3x ln(3)
(using the rule for exponential functions). If g(x) = x2 − 1 (the denominator of our
expression), we have that g′(x) = 2x. Therefore, both derivatives exist.

3. We can verify that g′(x) = 2x ̸= 0 whenever x ∈ (1−h, 1)∪ (1, 1+h) for some small h > 0
(i.e. whenever x is close to, but not equal to 1).

4. Therefore we can apply l’Hôpital’s rule to f(x)
g(x) , which tells us that

lim
x→1

f(x)

g(x)
= lim

x→1

f ′(x)

g′(x)
= lim

x→1

4x ln(4)− 3x ln(3)

2x
=

4 ln(4)− 3 ln(3)

2

(L’Hôpital’s rule at ±∞)
When x → a (where a is any real number or ±∞), L’Hôpital’s rule states that if f(x) and g(x) both
approach 0 or both approach ±∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided the right hand limit exists, and provided g′(x) ̸= 0 whenever x ∈ (a−h, a)∪ (a, a+h) for some
h > 0 (or, if a = ±∞, whenever x ∈ (h,∞) or (−∞, h) as the case may be).
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3. Evaluate the following limits, using L’Hôpital’s rule as appropriate.

(a) lim
x→∞

15x3

e2x

(b) lim
x→∞

ex + x

ex + x2

Solution:

(a) We proceed by steps.

1. By direct substitution,

lim
x→∞

15x3

e2x
=

∞
∞

which is a nonsense answer (an indeterminate form).

2. Next, if f(x) = 15x3 (the numerator of our expression), then f ′(x) = 45x2 (using the rule
for exponential functions). If g(x) = e2x (the denominator of our expression), we have
that g′(x) = 2e2x (using the chain rule). Therefore, both derivatives exist.

3. We can verify that g′(x) = 2e2x ̸= 0 whenever x ∈ (h,∞) for some large enough h > 0
(i.e. whenever x is bigger than some number h).

4. Therefore we can apply l’Hôpital’s rule to f(x)
g(x) , which tells us that

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
= lim

x→∞

45x2

2e2x

5. By direct substitution we get ∞
∞ , which is once again a nonsense answer (an indeterminate

form).

6. We can repeat the process by calculating f ′′(x) = 90x and g′′(x) = 4e2x.

7. Since g′′(x) = 4e2x ̸= 0 for all x ∈ (h,∞) for some large enough h > 0, we can apply
l’Hôpital’s rule to get

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

f ′′(x)

g′′(x)
= lim

x→∞

90x

4e2x

8. By direct substitution we get ∞
∞ , which is once again a nonsense answer (an indeterminate

form).

9. We can repeat the process by calculating f ′′′(x) = 90 and g′′′(x) = 8e2x.

10. Since g′′′(x) = 4e2x ̸= 0 for all x ∈ (h,∞) for some large enough h > 0, we can apply
l’Hôpital’s rule to get

lim
x→∞

f ′′(x)

g′′(x)
= lim

x→∞

f ′′′(x)

g′′′(x)
= lim

x→∞

90

8e2x
= 0

since 90 is a constant, and since e2x → ∞ as x → ∞.

(b) We proceed by steps.

1. By direct substitution,

lim
x→∞

ex + x

ex + x2
=

∞
∞

which is a nonsense answer (an indeterminate form).

5



2. Next, if f(x) = ex + x (the numerator of our expression), then f ′(x) = ex + 1. If g(x) =
ex + x2 (the denominator of our expression), we have that g′(x) = ex + 2x. Therefore,
both derivatives exist.

3. We can verify that g′(x) = ex + 2x ̸= 0 whenever x ∈ (h,∞) for some large enough h > 0
(i.e. whenever x is bigger than some number h).

4. Therefore we can apply l’Hôpital’s rule to f(x)
g(x) , which tells us that

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
= lim

x→∞

ex + 1

ex + 2x

5. By direct substitution we get ∞
∞ , which is once again a nonsense answer (an indeterminate

form).

6. We can repeat the process by calculating f ′′(x) = ex and g′′(x) = ex + 2.

7. Since g′′(x) = ex + 2 ̸= 0 for all x ∈ (h,∞) for some large enough h > 0, we can apply
l’Hôpital’s rule to get

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

f ′′(x)

g′′(x)
= lim

x→∞

ex

ex + 2

8. By direct substitution we get ∞
∞ , which is once again a nonsense answer (an indeterminate

form).

9. We can repeat the process by calculating f ′′′(x) = ex and g′′′(x) = ex.

10. Since g′′′(x) = ex ̸= 0 for all x ∈ (h,∞) for some large enough h > 0, we can apply
l’Hôpital’s rule to get

lim
x→∞

f ′′(x)

g′′(x)
= lim

x→∞

f ′′′(x)

g′′′(x)
= lim

x→∞

ex

ex
= lim

x→∞
1 = 1 .

4. We say that a function g dominates a function f when we have lim
x→∞

f(x) = ∞, lim
x→∞

g(x) = ∞, and

lim
x→∞

f(x)

g(x)
= 0.

(a) Which function dominates the other: ln(x) or
√
x?

(b) Which function dominates the other: ln(x) or x1/n? (n is any natural number bigger than 1)

(c) Explain why ex dominates every polynomial.

Solution:
(a) We know that lim

x→∞
ln(x) = ∞ and lim

x→∞

√
x = ∞. We need to figure out if lim

x→∞
ln(x)√

x
= 0 or if

lim
x→∞

√
x

ln(x) = 0.

To find lim
x→∞

ln(x)√
x
, we proceed by steps.

1. Direct substitution gives us ∞
∞ , which is a nonsense answer.

2. We can calculate d
dx [ln(x)] = 1

x and d
dx [

√
x] = 1

2
√
x
. Therefore the derivatives of both the

numerator and denominator exist.

3. We can verify that d
dx [

√
x] = 1

2
√
x
̸= 0 when x ∈ (h,∞) for some large enough h > 0. Therefore

we can apply l’Hôpital’s rule.
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4. Applying l’Hôpital’s rule to ln(x)√
x
, we get

lim
x→∞

ln(x)√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2
√
x

x
= lim

x→∞

2√
x
= 0

since 2 is a constant and since
√
x → ∞ as x → ∞.

Therefore
√
x dominates ln(x).

(b) We know that lim
x→∞

ln(x) = ∞ and lim
x→∞

x
1
n = ∞. We need to figure out if lim

x→∞
ln(x)

x
1
n

= 0 or if

lim
x→∞

x
1
n

ln(x) = 0.

To find lim
x→∞

ln(x)

x
1
n

, we proceed by steps.

1. Direct substitution gives us ∞
∞ , which is a nonsense answer.

2. We can calculate d
dx [ln(x)] = 1

x = x−1 and d
dx

[
x

1
n

]
= 1

nx
1
n−1. Therefore the derivatives of

both the numerator and denominator exist.

3. We can verify that d
dx

[
x

1
n

]
= 1

nx
1
n−1 ̸= 0 when x ∈ (h,∞) for some large enough h > 0.

Therefore we can apply l’Hôpital’s rule.

4. Applying l’Hôpital’s rule to ln(x)

x
1
n

, we get

lim
x→∞

ln(x)

x
1
n

= lim
x→∞

x−1

1
nx

1
n−1

= lim
x→∞

n

x
1
n−1+1

= lim
x→∞

n

x
1
n

= 0

since n is a constant and since x
1
n → ∞ as x → ∞.

Therefore x
1
n dominates ln(x).

(c) Any polynomial function is of the form p(x) = a0+a1x+a2x
2+ . . .+anx

n, where a0, a1, a2, . . . , an
are all constants. When we differentiate p, we get p′(x) = a1 + 2a2x + 3a3x

2 + . . . + n · anxn−1.
Notice that the constant a0 has disappeared. Therefore, when p(x) is differentiated n + 1 times,
every term disappears and we get p(n+1)(x) = 0 (i.e. the (n+ 1)’th derivative of p is 0).

Now if f(x) = ex, we know that f (n+1)(x) = ex (the (n + 1)’th derivative of ex is always ex).

Therefore applying l’Hôpital’s rule (n + 1) times to p(x)
ex (where p(x) is any polynomial) gives us

lim
x→∞

p(x)
ex = 0. Therefore ex dominates every polynomial.
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