Math 15003 - Calculus I

Homework assignment 5

Due: Wednesday, November 1, 2023

1. (a) Find $\frac{d}{d x}[y]$ in terms of x and y if we have that $x \cdot \ln (y)+y^{3}=3 \cdot \ln (x)$.
(b) Use implicit differentiation to find the tangent line to the curve $x=y^{5}-5 y^{3}+4 y$ at the point $(0,1)$.
(c) Use implicit differentiation to find the tangent line to the curve $\sin (x+y)+\cos (x-y)=1$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution:

(a) We are assuming that $y(x)$ is an implicit function of x, and the question asks us to find the derivative $y^{\prime}(x)$ in terms of x and $y(x)$. Differentiating both sides of the given equation, we have:

$$
\begin{aligned}
\frac{d}{d x}[3 \cdot \ln (x)] & =\frac{d}{d x}\left[x \cdot \ln (y(x))+y(x)^{3}\right] \\
\text { i.e. } \quad 3 \cdot \frac{1}{x} & =\frac{d}{d x}[x \cdot \ln (y(x))]+\frac{d}{d x}\left[y(x)^{3}\right] \quad \text { (using the sum and constant multiple rules) } \\
\text { i.e. } \quad \frac{3}{x} & =\left(1 \cdot \ln (y(x))+x \cdot \frac{d}{d x}[\ln (y(x))]\right)+3 y(x)^{2} \cdot y^{\prime}(x) \quad \text { (using product and chain rules } \\
\text { i.e. } \quad \frac{3}{x} & =\ln (y(x))+\frac{1}{y(x)} \cdot y^{\prime}(x)+3 y(x)^{2} \cdot y^{\prime}(x) \quad \text { (using the chain rule) }
\end{aligned}
$$

$$
\text { i.e. } \quad \frac{3}{x}-\ln (y(x))=y^{\prime}(x) \cdot\left(\frac{1}{y(x)}+3 y(x)^{2}\right)
$$

i.e. $\quad \frac{d}{d x}[y]=\frac{\frac{3}{x}-\ln (y)}{\frac{1}{y}+3 y^{2}}$.
(b) The implicit function theorem tells us that if we zoom into a small neighborhood of the point $(0,1)$, then the curve given by $x=y^{5}-5 y^{3}+4 y$ looks like a function. (That is, it satisfies the vertical line test.) We can verify this using a graphing calculator (like Desmos or Geogebra). Below on the left is the graph of the curve, and on the right is the same graph but zoomed into a neighborhood of the point $(0,1)$.

Therefore, we can implicitly assume y to be some function $y(x)$ (in the neighborhood of the point $(0,1))$ and differentiate both sides of the equation of the curve to get

$$
\begin{aligned}
\frac{d}{d x}[x] & =\frac{d}{d x}\left[y(x)^{5}-5 y(x)^{3}+4 y(x)\right] \\
\text { i.e. } \quad 1 & =5 y(x)^{4} y^{\prime}(x)-15 y(x)^{2} y^{\prime}(x)+4 y^{\prime}(x) \quad \text { (using the sum and chain rules) }
\end{aligned}
$$

$$
\text { i.e. } \quad y^{\prime}(x)=\frac{1}{5 y(x)^{4}-15 y(x)^{2}+4}
$$

Since at the point $(0,1)$, we have $x=0$ and $y(0)=1$, we have

$$
\begin{aligned}
y^{\prime}(0) & =\frac{1}{5 y(0)^{4}-15 y(0)^{2}+4} \\
& =\frac{1}{1-15+4} \\
& =-\frac{1}{10}=-0.1
\end{aligned}
$$

Therefore, the slope of the tangent line to the curve at the point $(0,1)$ is $y^{\prime}(0)=-0.1$. Since we know the slope of the line and a point on it (namely $(0,1)$), the equation of the line (in point-slope form) is $y-1=-0.1(x-0)$. In standard form, the equation of the tangent line is $y=-0.1 x+1$.
(c) The implicit function theorem tells us that if we zoom into a small neighborhood of the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, then the curve given by $\sin (x+y)+\cos (x-y)=1$ looks like a function. (That is, it satisfies the vertical line test.) We can verify this using a graphing calculator (like Desmos or Geogebra). Below on the left is the graph of the curve, and on the right is the same graph but zoomed into a neighborhood of the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, we can implicitly assume y to be some function $y(x)$ (in the neighborhood of the point $\left.\left(\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$ and differentiate both sides of the equation of the curve to get

$$
\frac{d}{d x}[\sin (x+y(x))+\cos (x-y(x))]=\frac{d}{d x}[1]
$$

i.e. $\quad \cos (x+y(x)) \frac{d}{d x}[x+y(x)]-\sin (x-y(x)) \frac{d}{d x}[x-y(x)]=0 \quad$ (using the sum and chain rules)
i.e. $\quad \cos (x+y(x))\left(1+y^{\prime}(x)\right)-\sin (x-y(x))\left(1-y^{\prime}(x)\right)=0 \quad$ (using the sum rule)

$$
\text { i.e. } \quad y^{\prime}(x)(\cos (x+y(x))+\sin (x-y(x)))=\sin (x-y(x))-\cos (x+y(x))
$$

$$
\text { i.e. } \quad y^{\prime}(x)=\frac{\sin (x-y(x))-\cos (x+y(x))}{(\cos (x+y(x))+\sin (x-y(x))}
$$

Since at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have $x=\frac{\pi}{2}$ and $y\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$, we have

$$
\begin{aligned}
y^{\prime}\left(\frac{\pi}{2}\right) & =\frac{\sin \left(\frac{\pi}{2}-\frac{\pi}{2}\right)-\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)}{\left(\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}-\frac{\pi}{2}\right)\right.} \\
& =\frac{\sin (0)-\cos (\pi)}{\cos (\pi)+\sin (0)} \\
& =\frac{0-(-1)}{(-1)+0}=-1
\end{aligned}
$$

Therefore, the slope of the tangent line to the curve at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is $y^{\prime}\left(\frac{\pi}{2}\right)=-1$. Since we know the slope of the line and a point on it (namely $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$), the equation of the line (in point-slope form) is $y-\frac{\pi}{2}=-1\left(x-\frac{\pi}{2}\right)$. In standard form, the equation of the tangent line is $y=-x+\pi$.
2. Use L'Hôpital's rule where appropriate to find the following limits.
(a) $\lim _{x \rightarrow 4} \frac{\ln \left(\frac{x}{4}\right)}{x^{2}-16}$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{1-\cos (3 x)}$
(c) $\lim _{x \rightarrow 1} \frac{4^{x}-3^{x}-1}{x^{2}-1}$

Solution:

(a) We proceed by steps.

1. By direct substitution, we have that

$$
\lim _{x \rightarrow 4} \frac{\ln \left(\frac{x}{4}\right)}{x^{2}-16}=\frac{\ln \left(\frac{4}{4}\right)}{4^{2}-16}=\frac{0}{0}
$$

which is a nonsense answer (an indeterminate form).
2. Next, if $f(x)=\ln \left(\frac{x}{4}\right)=\ln (x)-\ln (4)$ (the numerator of our expression), then $f^{\prime}(x)=\frac{1}{x}$. If $g(x)=x^{2}-16$ (the denominator of our expression), we have that $g^{\prime}(x)=2 x$. Therefore, both derivatives exist.
3. We can verify that $g^{\prime}(x)=2 x \neq 0$ whenever $x \in(4-h, 4) \cup(4,4+h)$ for some small $h>0$ (i.e. whenever x is close to, but not equal to 4).
4. Therefore we can apply l'Hôpital's rule to $\frac{f(x)}{g(x)}$, which tells us that

$$
\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 4} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 4} \frac{\frac{1}{x}}{2 x}=\lim _{x \rightarrow 4} \frac{1}{2 x^{2}}=\frac{1}{2\left(4^{2}\right)}=\frac{1}{32}
$$

(b) We proceed by steps.

1. By direct substitution,

$$
\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{1-\cos (3 x)}=\frac{1-\cos (0)}{1-\cos (0)}=\frac{0}{0}
$$

which is a nonsense answer (an indeterminate form).
2. Next, if $f(x)=1-\cos (7 x)$ (the numerator of our expression), then $f^{\prime}(x)=7 \sin (7 x)$ (using the chain rule). If $g(x)=1-\cos (3 x)$ (the denominator of our expression), we have that $g^{\prime}(x)=3 \sin (3 x)$ (also using the chain rule). Therefore, both derivatives exist.
3. We can verify that $g^{\prime}(x)=3 \sin (3 x) \neq 0$ whenever $x \in(-h, 0) \cup(0, h)$ for some small $h>0$ (i.e. whenever x is close to, but not equal to 0).
4. Therefore we can apply l'Hôpital's rule to $\frac{f(x)}{g(x)}$, which tells us that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{7 \sin (7 x)}{3 \sin (3 x)}
$$

5. If we try direct substitution, we get $\frac{7 \sin (0)}{3 \sin (0)}=\frac{0}{0}$, which is once again a nonsense answer.
6. We can repeat the process, by calculating $f^{\prime \prime}(x)=49 \cos (7 x)$ (once again using the chain rule), and $g^{\prime \prime}(x)=9 \cos (3 x)$ (also using the chain rule).
7. We can verify that $g^{\prime \prime}(x)=9 \cos (3 x) \neq 0$ whenever $x \in(-h, 0) \cup(0, h)$ for some small $h>0$ (i.e. whenever x is close to, but not equal to 0).
8. Therefore we can reapply l'Hôpital's rule to $\frac{f^{\prime}(x)}{g^{\prime}(x)}$, which tells us that

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow 0} \frac{49 \cos (7 x)}{9 \cos (3 x)}=\frac{49 \cos (0)}{9 \cos (0)}=\frac{49}{9}
$$

(c) We proceed by steps.

1. By direct substitution,

$$
\lim _{x \rightarrow 1} \frac{4^{x}-3^{x}-1}{x^{2}-1}=\frac{4^{1}-3^{1}-1}{1^{2}-1}=\frac{0}{0}
$$

which is a nonsense answer (an indeterminate form).
2. Next, if $f(x)=4^{x}-3^{x}-1$ (the numerator of our expression), then $f^{\prime}(x)=4^{x} \ln (4)-3^{x} \ln (3)$ (using the rule for exponential functions). If $g(x)=x^{2}-1$ (the denominator of our expression), we have that $g^{\prime}(x)=2 x$. Therefore, both derivatives exist.
3. We can verify that $g^{\prime}(x)=2 x \neq 0$ whenever $x \in(1-h, 1) \cup(1,1+h)$ for some small $h>0$ (i.e. whenever x is close to, but not equal to 1).
4. Therefore we can apply l'Hôpital's rule to $\frac{f(x)}{g(x)}$, which tells us that

$$
\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 1} \frac{4^{x} \ln (4)-3^{x} \ln (3)}{2 x}=\frac{4 \ln (4)-3 \ln (3)}{2}
$$

(L'Hôpital's rule at $\pm \infty$)
When $x \rightarrow a$ (where a is any real number or $\pm \infty$), L'Hôpital's rule states that if $f(x)$ and $g(x)$ both approach 0 or both approach $\pm \infty$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the right hand limit exists, and provided $g^{\prime}(x) \neq 0$ whenever $x \in(a-h, a) \cup(a, a+h)$ for some $h>0$ (or, if $a= \pm \infty$, whenever $x \in(h, \infty)$ or $(-\infty, h)$ as the case may be).
3. Evaluate the following limits, using L'Hôpital's rule as appropriate.
(a) $\lim _{x \rightarrow \infty} \frac{15 x^{3}}{e^{2 x}}$
(b) $\lim _{x \rightarrow \infty} \frac{e^{x}+x}{e^{x}+x^{2}}$

Solution:

(a) We proceed by steps.

1. By direct substitution,

$$
\lim _{x \rightarrow \infty} \frac{15 x^{3}}{e^{2 x}}=\frac{\infty}{\infty}
$$

which is a nonsense answer (an indeterminate form).
2. Next, if $f(x)=15 x^{3}$ (the numerator of our expression), then $f^{\prime}(x)=45 x^{2}$ (using the rule for exponential functions). If $g(x)=e^{2 x}$ (the denominator of our expression), we have that $g^{\prime}(x)=2 e^{2 x}$ (using the chain rule). Therefore, both derivatives exist.
3. We can verify that $g^{\prime}(x)=2 e^{2 x} \neq 0$ whenever $x \in(h, \infty)$ for some large enough $h>0$ (i.e. whenever x is bigger than some number h).
4. Therefore we can apply l'Hôpital's rule to $\frac{f(x)}{g(x)}$, which tells us that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{45 x^{2}}{2 e^{2 x}}
$$

5. By direct substitution we get $\frac{\infty}{\infty}$, which is once again a nonsense answer (an indeterminate form).
6. We can repeat the process by calculating $f^{\prime \prime}(x)=90 x$ and $g^{\prime \prime}(x)=4 e^{2 x}$.
7. Since $g^{\prime \prime}(x)=4 e^{2 x} \neq 0$ for all $x \in(h, \infty)$ for some large enough $h>0$, we can apply l'Hôpital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{90 x}{4 e^{2 x}}
$$

8. By direct substitution we get $\frac{\infty}{\infty}$, which is once again a nonsense answer (an indeterminate form).
9. We can repeat the process by calculating $f^{\prime \prime \prime}(x)=90$ and $g^{\prime \prime \prime}(x)=8 e^{2 x}$.
10. Since $g^{\prime \prime \prime}(x)=4 e^{2 x} \neq 0$ for all $x \in(h, \infty)$ for some large enough $h>0$, we can apply l'Hôpital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime \prime \prime}(x)}{g^{\prime \prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{90}{8 e^{2 x}}=0
$$

since 90 is a constant, and since $e^{2 x} \rightarrow \infty$ as $x \rightarrow \infty$.
(b) We proceed by steps.

1. By direct substitution,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}+x}{e^{x}+x^{2}}=\frac{\infty}{\infty}
$$

which is a nonsense answer (an indeterminate form).
2. Next, if $f(x)=e^{x}+x$ (the numerator of our expression), then $f^{\prime}(x)=e^{x}+1$. If $g(x)=$ $e^{x}+x^{2}$ (the denominator of our expression), we have that $g^{\prime}(x)=e^{x}+2 x$. Therefore, both derivatives exist.
3. We can verify that $g^{\prime}(x)=e^{x}+2 x \neq 0$ whenever $x \in(h, \infty)$ for some large enough $h>0$ (i.e. whenever x is bigger than some number h).
4. Therefore we can apply l'Hôpital's rule to $\frac{f(x)}{g(x)}$, which tells us that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+2 x}
$$

5. By direct substitution we get $\frac{\infty}{\infty}$, which is once again a nonsense answer (an indeterminate form).
6. We can repeat the process by calculating $f^{\prime \prime}(x)=e^{x}$ and $g^{\prime \prime}(x)=e^{x}+2$.
7. Since $g^{\prime \prime}(x)=e^{x}+2 \neq 0$ for all $x \in(h, \infty)$ for some large enough $h>0$, we can apply l'Hôpital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+2}
$$

8. By direct substitution we get $\frac{\infty}{\infty}$, which is once again a nonsense answer (an indeterminate form).
9. We can repeat the process by calculating $f^{\prime \prime \prime}(x)=e^{x}$ and $g^{\prime \prime \prime}(x)=e^{x}$.
10. Since $g^{\prime \prime \prime}(x)=e^{x} \neq 0$ for all $x \in(h, \infty)$ for some large enough $h>0$, we can apply l'Hôpital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime \prime \prime}(x)}{g^{\prime \prime \prime}(x)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=\lim _{x \rightarrow \infty} 1=1 .
$$

4. We say that a function g dominates a function f when we have $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} g(x)=\infty$, and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$.
(a) Which function dominates the other: $\ln (x)$ or \sqrt{x} ?
(b) Which function dominates the other: $\ln (x)$ or $x^{1 / n}$? (n is any natural number bigger than 1)
(c) Explain why e^{x} dominates every polynomial.

Solution:

(a) We know that $\lim _{x \rightarrow \infty} \ln (x)=\infty$ and $\lim _{x \rightarrow \infty} \sqrt{x}=\infty$. We need to figure out if $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}=0$ or if $\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{\ln (x)}=0$.
To find $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}$, we proceed by steps.

1. Direct substitution gives us $\frac{\infty}{\infty}$, which is a nonsense answer.
2. We can calculate $\frac{d}{d x}[\ln (x)]=\frac{1}{x}$ and $\frac{d}{d x}[\sqrt{x}]=\frac{1}{2 \sqrt{x}}$. Therefore the derivatives of both the numerator and denominator exist.
3. We can verify that $\frac{d}{d x}[\sqrt{x}]=\frac{1}{2 \sqrt{x}} \neq 0$ when $x \in(h, \infty)$ for some large enough $h>0$. Therefore we can apply l'Hôpital's rule.
4. Applying l'Hôpital's rule to $\frac{\ln (x)}{\sqrt{x}}$, we get

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

since 2 is a constant and since $\sqrt{x} \rightarrow \infty$ as $x \rightarrow \infty$.
Therefore \sqrt{x} dominates $\ln (x)$.
(b) We know that $\lim _{x \rightarrow \infty} \ln (x)=\infty$ and $\lim _{x \rightarrow \infty} x^{\frac{1}{n}}=\infty$. We need to figure out if $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\frac{1}{n}}}=0$ or if $\lim _{x \rightarrow \infty} \frac{x^{\frac{1}{n}}}{\ln (x)}=0$.
To find $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\frac{1}{n}}}$, we proceed by steps.

1. Direct substitution gives us $\frac{\infty}{\infty}$, which is a nonsense answer.
2. We can calculate $\frac{d}{d x}[\ln (x)]=\frac{1}{x}=x^{-1}$ and $\frac{d}{d x}\left[x^{\frac{1}{n}}\right]=\frac{1}{n} x^{\frac{1}{n}-1}$. Therefore the derivatives of both the numerator and denominator exist.
3. We can verify that $\frac{d}{d x}\left[x^{\frac{1}{n}}\right]=\frac{1}{n} x^{\frac{1}{n}-1} \neq 0$ when $x \in(h, \infty)$ for some large enough $h>0$. Therefore we can apply l'Hôpital's rule.
4. Applying l'Hôpital's rule to $\frac{\ln (x)}{x^{\frac{1}{n}}}$, we get

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{\frac{1}{n}}}=\lim _{x \rightarrow \infty} \frac{x^{-1}}{\frac{1}{n} x^{\frac{1}{n}-1}}=\lim _{x \rightarrow \infty} \frac{n}{x^{\frac{1}{n}-1+1}}=\lim _{x \rightarrow \infty} \frac{n}{x^{\frac{1}{n}}}=0
$$

since n is a constant and since $x^{\frac{1}{n}} \rightarrow \infty$ as $x \rightarrow \infty$.
Therefore $x^{\frac{1}{n}}$ dominates $\ln (x)$.
(c) Any polynomial function is of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are all constants. When we differentiate p, we get $p^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots+n \cdot a_{n} x^{n-1}$. Notice that the constant a_{0} has disappeared. Therefore, when $p(x)$ is differentiated $n+1$ times, every term disappears and we get $p^{(n+1)}(x)=0$ (i.e. the $(n+1)^{\prime}$ 'th derivative of p is 0).
Now if $f(x)=e^{x}$, we know that $f^{(n+1)}(x)=e^{x}$ (the $(n+1)$ 'th derivative of e^{x} is always e^{x}). Therefore applying l'Hôpital's rule $(n+1)$ times to $\frac{p(x)}{e^{x}}$ (where $p(x)$ is any polynomial) gives us $\lim _{x \rightarrow \infty} \frac{p(x)}{e^{x}}=0$. Therefore e^{x} dominates every polynomial.

