Math 15003 - Calculus I

Homework assignment 5

Due: Wednesday, November 1, 2023

1. (a) Find $\frac{d}{d x}[y]$ in terms of x and y if we have that $x \cdot \ln (y)+y^{3}=3 \cdot \ln (x)$.
(b) Use implicit differentiation to find the tangent line to the curve $x=y^{5}-5 y^{3}+4 y$ at the point $(0,1)$.
(c) Use implicit differentiation to find the tangent line to the curve $\sin (x+y)+\cos (x-y)=1$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
2. Use L'Hôpital's rule where appropriate to find the following limits.
(a) $\lim _{x \rightarrow 4} \frac{\ln \left(\frac{x}{4}\right)}{x^{2}-16}$
(b) $\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{1-\cos (3 x)}$
(c) $\lim _{x \rightarrow 1} \frac{4^{x}-3^{x}-1}{x^{2}-1}$
(L'Hôpital's rule at $\pm \infty$)
When $x \rightarrow a$ (where a is any real number or $\pm \infty$), L'Hôpital's rule states that if $f(x)$ and $g(x)$ both approach 0 or both approach $\pm \infty$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the right hand limit exists, and provided $g^{\prime}(x) \neq 0$ whenever $x \in(a-h, a) \cup(a, a+h)$ for some $h>0$ (or, if $a= \pm \infty$, whenever $x \in(h, \infty)$ or $(-\infty, h)$ as the case may be).
3. Evaluate the following limits, using L'Hôpital's rule as appropriate.
(a) $\lim _{x \rightarrow \infty} \frac{15 x^{3}}{e^{2 x}}$
(b) $\lim _{x \rightarrow \infty} \frac{e^{x}+x}{e^{x}+x^{2}}$
4. We say that a function g dominates a function f when we have $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} g(x)=\infty$, and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$.
(a) Which function dominates the other: $\ln (x)$ or \sqrt{x} ?
(b) Which function dominates the other: $\ln (x)$ or $x^{1 / n}$? (n is any natural number bigger than 1)
(c) Explain why e^{x} dominates every polynomial.

