Math 150 03 – Calculus I

Homework assignment 5

Due: Wednesday, November 1, 2023

- 1. (a) Find $\frac{d}{dx}[y]$ in terms of x and y if we have that $x \cdot \ln(y) + y^3 = 3 \cdot \ln(x)$.
 - (b) Use implicit differentiation to find the tangent line to the curve $x = y^5 5y^3 + 4y$ at the point (0, 1).
 - (c) Use implicit differentiation to find the tangent line to the curve sin(x + y) + cos(x y) = 1 at the point $(\frac{\pi}{2}, \frac{\pi}{2})$.
- 2. Use L'Hôpital's rule where appropriate to find the following limits.

(a)
$$\lim_{x \to 4} \frac{\ln(\frac{x}{4})}{x^2 - 16}$$

(b) $\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(3x)}$
(c) $\lim_{x \to 1} \frac{4^x - 3^x - 1}{x^2 - 1}$

(L'Hôpital's rule at $\pm \infty$)

When $x \to a$ (where a is any real number or $\pm \infty$), L'Hôpital's rule states that if f(x) and g(x) both approach 0 or both approach $\pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the right hand limit exists, and provided $g'(x) \neq 0$ whenever $x \in (a - h, a) \cup (a, a + h)$ for some h > 0 (or, if $a = \pm \infty$, whenever $x \in (h, \infty)$ or $(-\infty, h)$ as the case may be).

3. Evaluate the following limits, using L'Hôpital's rule as appropriate.

(a)
$$\lim_{x \to \infty} \frac{15x^3}{e^{2x}}$$

(b)
$$\lim_{x \to \infty} \frac{e^x + x}{e^x + x^2}$$

4. We say that a function g dominates a function f when we have $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$, and f(x)

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

- (a) Which function dominates the other: $\ln(x)$ or \sqrt{x} ?
- (b) Which function dominates the other: $\ln(x)$ or $x^{1/n}$? (n is any natural number bigger than 1)
- (c) Explain why e^x dominates every polynomial.