Math 15003 - Calculus I

Homework assignment 6

Due: Wednesday, November 8, 2023

1. Find antiderivatives of the following functions using the Anti-Sum and Anti-Constant Multiple rules.
(a) $\frac{1}{3} x^{5}+x^{3}-4$
(b) $\frac{x^{2}-3 x+2}{x^{2}}$

Solution:

(a) 1. We have

$$
f(x)=g(x)+h(x)+i(x)
$$

where $g(x)=\frac{1}{3} x^{5}, h(x)=x^{3}$, and $i(x)=-4$. Using the Anti-Sum rule, we have that $\left(\int f\right)(x)=\left(\int g\right)(x)+\left(\int h\right)(x)+\left(\int i\right)(x)$.
2. To find $\left(\int g\right)(x)$, we use the anti-constant multiple rule and the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $a \neq-1$) to get

$$
\left(\int g\right)(x)=\frac{1}{3} \cdot \frac{x^{6}}{6}+C=\frac{x^{6}}{18}+C
$$

3. To find $\left(\int h\right)(x)$, we use the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $\left.a \neq-1\right)$ to get

$$
\left(\int h\right)(x)=\frac{x^{4}}{4}+C
$$

4. To find $\left(\int i\right)(x)$, we use the anti-constant multiple rule and the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $a \neq-1$) to get

$$
\left(\int i\right)(x)=-4 x+C
$$

5. Therefore,

$$
\left(\int f\right)(x)=\frac{x^{6}}{18}+\frac{x^{4}}{4}-4 x+C
$$

(b) 1. We have

$$
f(x)=\frac{x^{2}-3 x+2}{x^{2}}=1-\frac{3}{x}+\frac{2}{x^{2}}=g(x)+h(x)+i(x)
$$

where $g(x)=1, h(x)=-\frac{3}{x}$, and $i(x)=\frac{2}{x^{2}}$. Using the Anti-Sum rule, we have that $\left(\int f\right)(x)=\left(\int g\right)(x)+\left(\int h\right)(x)+\left(\int i\right)(x)$.
2. To find $\left(\int g\right)(x)$, we use the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $\left.a \neq-1\right)$ to get

$$
\left(\int g\right)(x)=x+C
$$

3. To find $\left(\int h\right)(x)$, we use the anti-constant multiple rule and the fact that an antiderivative of $\frac{1}{x}$ is $\ln (x)+C$ to get

$$
\left(\int h\right)(x)=-3 \ln (x)+C
$$

4. To find $\left(\int i\right)(x)$, we use the anti-constant multiple rule and the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $a \neq-1$) to get

$$
\left(\int i\right)(x)=2 \cdot \frac{x^{-1}}{-1}+C=-\frac{2}{x}+C
$$

5. Therefore,

$$
\left(\int f\right)(x)=x-3 \ln (x)-\frac{2}{x}+C
$$

Recall that the Anti-Chain rule can be stated as follows.
Anti-Chain Rule: "If $h(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, then the antiderivative of h is $\left(\int h\right)(x)=g(f(x))+C$, where C is any constant real number."
2. (a) Recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$. Use the Anti-Chain rule to calculate the antiderivative of $h(x)=\tan (x)$.
(b) Calculate $\frac{d}{d x}[\tan (x)]$.
(c) Recall that $\sec (x)^{2}=\tan (x)^{2}+1$. Use this and the previous answer to calculate the antiderivative of $h(x)=\tan (x)^{2}$.

Solution:

(a) Let $h(x)=\tan (x)$. We want to find functions g and such that $g^{\prime}(f(x)) \cdot f^{\prime}(x)=h(x)$. Since we have that $h(x)=\frac{\sin (x)}{\cos (x)}=\frac{1}{\cos (x)} \cdot \sin (x)$ we can let $f(x)=\cos (x)$ (since $\cos (x)$ is the "inside" function). Then $f^{\prime}(x)=-\sin (x)$, and so we can solve $g^{\prime}(\cos (x)) \cdot(-\sin (x))=\frac{\sin (x)}{\cos (x)}$ for g^{\prime}.

$$
\begin{aligned}
g^{\prime}(\cos (x)) \cdot(-\sin (x)) & =\frac{\sin (x)}{\cos (x)} \\
\text { i.e. } \quad g^{\prime}(\cos (x)) & \left.=-\frac{1}{\cos (x)} \quad \text { (dividing both sides by }-\sin (x)\right) \\
\text { i.e. } \quad g^{\prime}(x) & =-\frac{1}{x}
\end{aligned}
$$

Since $g^{\prime}(x)=-\frac{1}{x}$, we can assume that $g(x)=-\ln (x)$. Then the Anti-Chain rule says that

$$
\left(\int h\right)(x)=g(f(x))+C=-\ln (\cos (x))+C
$$

(b) To calculate $\frac{d}{d x}[\tan (x)]$ we can use the quotient rule.

$$
\begin{aligned}
\frac{d}{d x}[\tan (x)] & =\frac{d}{d x}\left[\frac{\sin (x)}{\cos (x)}\right] \\
& =\frac{\frac{d}{d x}[\sin (x)] \cdot \cos (x)-\sin (x) \cdot \frac{d}{d x}[\cos (x)]}{\cos (x)^{2}} \\
& =\frac{\cos (x)^{2}-\sin (x) \cdot(-\sin (x))}{\cos (x)^{2}} \\
& =\frac{\cos (x)^{2}+\sin (x)^{2}}{\cos (x)^{2}} \\
& =\frac{1}{\cos (x)^{2}}=\sec (x)^{2} \quad\left(\text { since } \sin (x)^{2}+\cos (x)^{2}=1\right)
\end{aligned}
$$

(c) Using the trigonometric identity $\left(\sec (x)^{2}=\tan (x)^{2}+1\right)$ have that $h(x)=\tan (x)^{2}=\sec (x)^{2}-$ $1=f(x)+g(x)$, where $f(x)=\sec (x)^{2}$ and $g(x)=-1$.

Therefore, we can apply the Anti-Sum rule to get $\left(\int h\right)(x)=\left(\int f\right)(x)+\left(\int g\right)(x)$.
In part (b) we have shown that $f(x)=\sec (x)^{2}$ is the derivative of $\tan (x)$. Therefore the antiderivative of f is $\left(\int f\right)(x)=\tan (x)+C$.
We can use the anti-constant multiple rule and the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $a \neq-1$) to get $\left(\int g\right)(x)=-x+C$.
Therefore we have

$$
\left(\int h\right)(x)=\left(\int f\right)(x)+\left(\int g\right)(x)=\tan (x)-x+C
$$

Recall that the Anti-Chain rule can also be stated as follows.
Anti-Chain Rule: "If $h(x)=g(f(x)) \cdot f^{\prime}(x)$, then the antiderivative of h is $\left(\int h\right)(x)=\left(\int g\right)(f(x))$, where $\left(\int g\right)$ is the antiderivative of $g . "$
3. Write each of the following functions as $g(f(x)) \cdot f^{\prime}(x)$ for an appropriate choice of the functions g and f. Use the Anti-Chain rule to evaluate their antiderivatives.
(a) $h(x)=\frac{(\ln (x))^{8}}{x}$
(b) $h(x)=\frac{e^{2 x}}{3+e^{2 x}}$
(c) $h(x)=\frac{e^{(3 \sqrt{x})}}{\sqrt{x}}$

Solution:

(a) 1. We want to find $g(x)$ and $f(x)$ such that $h(x)=\frac{(\ln (x))^{8}}{x}=g(f(x)) \cdot f^{\prime}(x)$. We recognise that the "inside" function is $\ln (x)$, therefore we let $f(x)=\ln (x)$.
2. Since $f(x)=\ln (x)$, we have $f^{\prime}(x)=\frac{1}{x}$. Therefore we can substitute $h(x), f(x)$ and $f^{\prime}(x)$ in $g(f(x)) \cdot f^{\prime}(x)=h(x)$ and solve for $g(x)$.

$$
\begin{aligned}
g(\ln (x)) \cdot \frac{1}{x} & =\frac{(\ln (x))^{8}}{x} \\
\text { i.e. } \quad g(\ln (x)) & \left.=(\ln (x))^{8} \quad \text { (multiplying both sides by } x\right) \\
\text { i.e. } \quad g(x) & =x^{8}
\end{aligned}
$$

Therefore $g(f(x)) \cdot f^{\prime}(x)=(\ln (x))^{8} \cdot \frac{1}{x}=h(x)$.
3. Hence to apply the Anti-Chain rule, which tells us that $\left(\int h\right)(x)=\left(\int g\right)(f(x))$, we need to find $\left(\int g\right)$. Since $g(x)=x^{8}$, we can use the fact that an antiderivative of x^{a} is $\frac{x^{a+1}}{a+1}+C$ (whenever $a \neq-1$) to get $\left(\int g\right)(x)=\frac{x^{9}}{9}+C$.
4. Therefore, applying the Anti-Chain rule, we get

$$
\left(\int h\right)(x)=\left(\int g\right)(f(x))=\frac{\ln (x)^{9}}{9}+C
$$

(b) 1. We want to find $g(x)$ and $f(x)$ such that $h(x)=\frac{e^{2 x}}{3+e^{2 x}}=e^{2 x}\left(3+e^{2 x}\right)^{-1}=g(f(x)) \cdot f^{\prime}(x)$. We recognise that the "inside" function is $\left(3+e^{2 x}\right)$, therefore we let $f(x)=3+e^{2 x}$.
2. Since $f(x)=\left(3+e^{2 x}\right)$, we have $f^{\prime}(x)=2 e^{2 x}$ (using the chain rule). Therefore we can substitute $h(x), f(x)$ and $f^{\prime}(x)$ in $g(f(x)) \cdot f^{\prime}(x)=h(x)$ and solve for $g(x)$.

$$
\begin{aligned}
& g\left(3+e^{2 x}\right) \cdot 2 e^{2 x}=\frac{e^{2 x}}{3+e^{2 x}} \\
& \text { i.e. } \quad \begin{aligned}
g\left(3+e^{2 x}\right) & =\frac{1}{2\left(3+e^{2 x}\right)} \quad \text { (dividing both sides by } 2 e^{2 x} \text {) } \\
\text { i.e. } \quad g(x) & =\frac{1}{2 x}
\end{aligned} \quad . \quad \text { (d) }
\end{aligned}
$$

Therefore $g(f(x)) \cdot f^{\prime}(x)=\frac{1}{2\left(3+e^{2 x}\right)} \cdot 2 e^{2 x}=\frac{e^{2 x}}{3+e^{2 x}}=h(x)$.
3. Hence to apply the Anti-Chain rule, which tells us that $\left(\int h\right)(x)=\left(\int g\right)(f(x))$, we need to find $\left(\int g\right)$. Since $g(x)=\frac{1}{2 x}=\frac{1}{2} \cdot \frac{1}{x}$, we can use the anti-constant multiple rule and the fact that an antiderivative of $\frac{1}{x}$ is $\ln (x)+C$ to get $\left(\int g\right)(x)=\frac{1}{2} \ln (x)+C$.
4. Therefore, applying the Anti-Chain rule, we get

$$
\left(\int h\right)(x)=\left(\int g\right)(f(x))=\frac{1}{2} \ln \left(3+e^{2 x}\right)+C
$$

(c) 1. We want to find $g(x)$ and $f(x)$ such that $h(x)=\frac{e^{(3 \sqrt{x})}}{\sqrt{x}}=\frac{e^{\left(3 x^{\frac{1}{2}}\right)}}{x^{\frac{1}{2}}}=g(f(x)) \cdot f^{\prime}(x)$. We recognise that the "inside" function is $\left(3 x^{\frac{1}{2}}\right)$, therefore we let $f(x)=3 x^{\frac{1}{2}}$.
2. Since $f(x)=3 x^{\frac{1}{2}}$, we have $f^{\prime}(x)=3 \cdot \frac{1}{2} x^{-\frac{1}{2}}=\frac{3}{2} x^{-\frac{1}{2}}$. Therefore we can substitute $h(x)$, $f(x)$ and $f^{\prime}(x)$ in $g(f(x)) \cdot f^{\prime}(x)=h(x)$ and solve for $g(x)$.

$$
\begin{aligned}
& g\left(3 x^{\frac{1}{2}}\right) \cdot \frac{3}{2} x^{-\frac{1}{2}}=\frac{e^{\left(3 x^{\frac{1}{2}}\right)}}{x^{\frac{1}{2}}} \\
& \text { i.e. } \quad g\left(3 x^{\frac{1}{2}}\right) \cdot \frac{3}{2}=e^{\left(3 x^{\frac{1}{2}}\right)} \quad \text { (multiplying both sides by } x^{\frac{1}{2}} \text {) } \\
& \text { i.e. } \quad g\left(3 x^{\frac{1}{2}}\right)=\frac{2}{3} \cdot e^{\left(3 x^{\frac{1}{2}}\right)} \quad \text { (multiplying both sides by } \frac{2}{3} \text {) } \\
& \text { i.e. } \quad g(x)=\frac{2}{3} \cdot e^{x}
\end{aligned}
$$

Therefore $g(f(x)) \cdot f^{\prime}(x)=\frac{2}{3} \cdot e^{\left(3 x^{\frac{1}{2}}\right)} \cdot \frac{3}{2} x^{-\frac{1}{2}}=\frac{e^{\left(3 x^{\frac{1}{2}}\right)}}{x^{\frac{1}{2}}}=h(x)$.
3. Hence to apply the Anti-Chain rule, which tells us that $\left(\int h\right)(x)=\left(\int g\right)(f(x))$, we need to find $\left(\int g\right)$. Since $g(x)=\frac{2}{3} \cdot e^{x}$, we can use the anti-constant multiple rule and the fact that an antiderivative of e^{x} is $e^{x}+C$ to get $\left(\int g\right)(x)=\frac{2}{3} \cdot e^{x}+C$.
4. Therefore, applying the Anti-Chain rule, we get

$$
\left(\int h\right)(x)=\left(\int g\right)(f(x))=\frac{2}{3} \cdot e^{\left(3 x^{\frac{1}{2}}\right)}+C
$$

4. Let $h(x)=x \sqrt{x-1}$. We would like to find the antiderivative of h.
(a) Let $f(x)=x-1$. Show that we can write h as $h(x)=\left((f(x)+1) \cdot f(x)^{1 / 2}\right) \cdot f^{\prime}(x)$.
(b) Expand the previous expression to show that we can write h as

$$
h(x)=i(f(x)) \cdot f^{\prime}(x)+j(f(x)) \cdot f^{\prime}(x)
$$

(c) Use the Anti-Sum and Anti-Chain rules to calculate the antiderivative of h.

Solution:

(a) Since $f(x)=x-1$, we have that $f^{\prime}(x)=1$. Substituting for $f(x)$ and $f^{\prime}(x)$, we get

$$
\left((f(x)+1) \cdot f(x)^{1 / 2}\right) \cdot f^{\prime}(x)=((x-1)+1) \cdot(x-1)^{1 / 2} \cdot 1=x \sqrt{x-1}=h(x)
$$

(b) We have

$$
\begin{aligned}
h(x) & =\left((f(x)+1) \cdot f(x)^{1 / 2}\right) \cdot f^{\prime}(x) \\
& =\left(f(x) \cdot f(x)^{1 / 2}+f(x)^{1 / 2}\right) \cdot f^{\prime}(x) \\
& =f(x)^{3 / 2} \cdot f^{\prime}(x)+f(x)^{1 / 2} \cdot f^{\prime}(x) \\
& =i(f(x)) \cdot f^{\prime}(x)+j(f(x)) \cdot f^{\prime}(x)
\end{aligned}
$$

where $i(x)=x^{3 / 2}$ and $j(x)=x^{1 / 2}$.
(c) Therefore, by the Anti-Chain and Anti-Sum rules, we have that

$$
\begin{aligned}
\left(\int h\right)(x) & =\left(\int i\right)(f(x))+\left(\int j\right)(f(x)) \\
& \left.=\left(\frac{f(x)^{5 / 2}}{\frac{5}{2}}+C_{1}\right)+\left(\frac{f(x)^{3 / 2}}{\frac{3}{2}}+C_{2}\right) \quad \text { (since an antiderivative of } x^{a} \text { is } \frac{x^{a+1}}{a+1}\right) \\
& =\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C
\end{aligned}
$$

