Math 15003 - Calculus I

Homework assignment 6

Due: Wednesday, November 8, 2023

1. Find the antiderivatives of the following functions using the Anti-Sum and Anti-Constant Multiple rules.
(a) $\frac{1}{3} x^{5}+x^{3}-4$
(b) $\frac{x^{2}-3 x+2}{x^{2}}$

Recall that the Anti-Chain rule can be stated as follows.
Anti-Chain Rule: "If $h(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, then the antiderivative of h is $\left(\int h\right)(x)=g(f(x))+C$, where C is any constant real number."
2. (a) Recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$. Use the Anti-Chain rule to calculate the antiderivative of $h(x)=\tan (x)$.
(b) Calculate $\frac{d}{d x}[\tan (x)]$.
(c) Recall that $\sec (x)^{2}=\tan (x)^{2}+1$. Use this and the previous answer to calculate the antiderivative of $h(x)=\tan (x)^{2}$.

Recall that the Anti-Chain rule can also be stated as follows.
Anti-Chain Rule: "If $h(x)=g(f(x)) \cdot f^{\prime}(x)$, then the antiderivative of h is $\left(\int h\right)(x)=\left(\int g\right)(f(x))$, where $\left(\int g\right)$ is the antiderivative of $g . "$
3. Write each of the following functions as $g(f(x)) \cdot f^{\prime}(x)$ for an appropriate choice of the functions g and f. Use the Anti-Chain rule to evaluate their antiderivatives.
(a) $h(x)=\frac{(\ln (x))^{8}}{x}$
(b) $h(x)=\frac{e^{2 x}}{3+e^{2 x}}$
(c) $h(x)=\frac{e^{(3 \sqrt{x})}}{\sqrt{x}}$
4. Let $h(x)=x \sqrt{x-1}$. We would like to find the antiderivative of h.
(a) Let $f(x)=x-1$. Show that we can write h as $h(x)=\left((f(x)+1) \cdot f(x)^{1 / 2}\right) \cdot f^{\prime}(x)$.
(b) Expand the previous expression to show that we can write h as

$$
h(x)=i(f(x)) \cdot f^{\prime}(x)+j(f(x)) \cdot f^{\prime}(x)
$$

(c) Use the Anti-Sum and Anti-Chain rules to calculate the antiderivative of h.

