Math 15003 - Calculus I

Homework assignment 8

Due: Monday, December 11, 2023

1. Reversing the bounds of integration: If $a \leq b$ are two real numbers, and if f is a real function that is continuous over the interval $[a, b]$, then the definite integral $\int_{b}^{a} f(t) \cdot d t$ is defined as:

$$
\int_{b}^{a} f(t) \cdot d t=-\int_{a}^{b} f(t) \cdot d t
$$

Consider the following definition.

$$
f(x)= \begin{cases}x^{5}+2 x^{2}-2 & \text { if } x \leq 0 \\ x^{3}+4 x-2 & \text { if } x>0\end{cases}
$$

(a) Is the function f continuous over $(-\infty, \infty)$? Namely, is f continuous at every real number x ?
(b) If $x \leq 0$, what is the value of $\int_{0}^{x} f(t) \cdot d t$?
(c) If $x>0$, what is the value of $\int_{0}^{x} f(t) \cdot d t$?
(d) Write a piecewise definition of an antiderivative of f.
2. The marginal cost function is the derivative of the total cost function. Similarly, the marginal revenue and marginal profit functions are the derivatives of the total revenue and total profit functions respectively. A company calculates its marginal cost function C^{\prime} as follows: If x thousand units have been produced, the marginal cost (i.e. the cost to produce the next unit) is

$$
C^{\prime}(x)=2 x^{-1 / 3} \quad \text { dollars per unit. }
$$

(a) Explain why the units of the marginal cost function C^{\prime} are (dollars per unit), while the units of the cost function C are (thousands of dollars).
(b) Find the company's total cost function C (i.e. $C(x)$ thousands of dollars to produce x thousand units) if the fixed cost to produce 0 units is 3 thousand dollars (i.e. $C(0)=3$).
(c) Suppose the company's marginal revenue function is as follows: If x thousand units have been sold, the marginal revenue (i.e. the revenue from selling the next unit) is

$$
R^{\prime}(x)=3 x^{-1 / 2} \quad \text { dollars per unit. }
$$

i. Find the marginal profit function P^{\prime}. (Remember that the total profit function P is defined as $P(x)=R(x)-C(x)$, where R and C are the total revenue and total cost functions.)
ii. Does the total profit function P have a maximum in the interval $[0,20]$? If so, find the value $a \in[0,20]$ such that P has a maximum at a.
iii. Calculate the total profit function P, assuming that the revenue from selling 0 units is 0 dollars (i.e. $R(0)=0$).

