Math 15003 - Calculus I

Final Cheat-sheet
December 20, 2023

Algebra of limits

Let f and g be any real functions. If a is any real number or ∞ or $-\infty$, and if the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

- Sum: $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- Product: $\lim _{x \rightarrow a} f(x) \cdot g(x)=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
- Quotient: If $\lim _{x \rightarrow a} g(x)$ is not equal to 0 , then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Remember: A rational function is a real function of the form $f(x)=\frac{p(x)}{q(x)}$, where p and q are 1 -variable polynomials. The domain of a rational function $f(x)=\frac{p(x)}{q(x)}$ is the set of all real numbers except for the roots of q (the real numbers a such that $q(a)=0)$. If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, and if a is a root of both polynomials p and q, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{p_{1}(x)}{q_{1}(x)}$, where $p(x)=p_{1}(x) \cdot(x-a)$ and $q(x)=q_{1}(x) \cdot(x-a)$.

Algebra of continuity

Remember: A real function f is continuous at a real number a if $f(a)$ is defined and if $\lim _{x \rightarrow a} f(x)=f(a)$.
If f and g are continuous at a, then:

- Sum: $(f+g)(x)=f(x)+g(x)$ is continuous at a.
- Product: $(f \cdot g)(x)=f(x) \cdot g(x)$ is continuous at a.
- Quotient: If $g(a) \neq 0$, then $\frac{f}{g}(x)=\frac{f(x)}{g(x)}$ is continuous at a.

Derivatives

Remember: Let f be a continuous real function. The derivative of f at a real number x is defined to be the limit:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} D_{h} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

If the derivative of f exists at every real number x in an interval I, then f is differentiable over the interval I.
Remember: If f is differentiable over I, then the derivative f^{\prime} is a real function that is continuous over I.
Remember: A function f is strictly increasing at a real number a if $f^{\prime}(a)>0$.
Remember: A function f is strictly decreasing at a real number a if $f^{\prime}(a)<0$.

Rules for derivatives

Let f, g be real functions that are differentiable over an interval I. Then,

- Sum rule:

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

- Product rule:

$$
(f \cdot g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

- Quotient rule: If $g(x)$ is never 0 over I, then

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}
$$

Some useful derivatives

The derivatives of some useful functions are given below.

- If $f(x)=a$ (for some constant real number a), then $f^{\prime}(x)=0$.
- If $f(x)=x^{a}$ (for some constant real number a), then $f^{\prime}(x)=a \cdot x^{a-1}$.
- If $f(x)=a \cdot g(x)$ (for some constant real number a and some function g), then $f^{\prime}(x)=a \cdot g^{\prime}(x)$.
- If $f(x)=a^{x}$ (for some constant real number a, then $f^{\prime}(x)=a^{x} \cdot \ln (a)$.
- If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
- If $f(x)=\cos (x)$, then $f^{\prime}(x)=-\sin (x)$.
- If $f(x)=\tan (x)$, then $f^{\prime}(x)=\sec (x)^{2}$.

Local and global maxima/minima

Let f be a differentiable real function.

- f has a local maximum at $x=a$ if $f^{\prime}(a)=0$ and if $f^{\prime \prime}(a)<0$.
- f has a local minimum at $x=a$ if $f^{\prime}(a)=0$ and if $f^{\prime \prime}(a)>0$.
- The global maximum of f is its largest local maximum.
- The global minimum of f is its smallest local maximum.

L'Hôpital's rule

When $x \rightarrow a$ (where a is any real number or $\pm \infty$), L'Hôpital's rule states that if $f(x)$ and $g(x)$ both approach 0 or both approach $\pm \infty$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the following conditions are satisfied:

1. the right hand limit exists,
2. if whenever $x \in(a-h, a) \cup(a, a+h)$ for some $h>0$ (or, if $a= \pm \infty$, whenever $x \in(h, \infty)$ or $(-\infty, h)$ as the case may be), then $g^{\prime}(x) \neq 0$ (that is, $g^{\prime}(x) \neq 0$ when x is close to, but not equal to a).

Antiderivatives

An antiderivative of a real function f is a real function $\left(\int f\right)$ such that $\left(\int f\right)^{\prime}(x)=f(x)$.

Some useful antiderivatives

- If $f(x)=x^{a}$, where a is any constant real number such that $a \neq-1$, then $\left(\int f\right)(x)=\frac{x^{a+1}}{a+1}+C$
- If $f(x)=\frac{1}{x}$, then $\left(\int f\right)(x)=\ln (x)+C$
- If $f(x)=e^{k x}$, where k is any constant real number such that $k \neq 0$, then $\left(\int f\right)(x)=\frac{1}{k} e^{k x}+C$
- If $f(x)=a^{k x}$, where a is any constant real number such that $a>0$ and $a \neq 1$, and k is any constant real number such that $k \neq 0$, then $\left(\int f\right)(x)=\frac{1}{k \ln (a)} a^{k x}+C$
- If $f(x)=\ln (x)$, then $\left(\int f\right)(x)=x \ln (x)-x+C$
- If $f(x)=\sin (x)$, then $\left(\int f\right)(x)=-\cos (x)+C$
- If $f(x)=\cos (x)$, then $\left(\int f\right)(x)=\sin (x)+C$
- If $f(x)=\tan (x)$, then $(f f)(x)=\ln (\sec (x))+C$

Remark: in each of the previous expressions, C is any arbitrary constant.

Rules for antiderivatives

- Anti-Sum rule: If $h(x)=f(x)+g(x)$, then

$$
\left(\int h\right)(x)=\left(\int f\right)(x)+\left(\int g\right)(x)
$$

- Anti-Constant Multiple rule: If $g(x)=c \cdot f(x)$, where c is any constant real number, then

$$
\left(\int g\right)(x)=c \cdot\left(\int f\right)(x)
$$

- Anti-Chain rule: If $h(x)=g(f(x)) \cdot f^{\prime}(x)$, then

$$
\left(\int h\right)(x)=\left(\int g\right)(f(x))
$$

where $\left(\int g\right)$ is an antiderivative of g.

- Anti-Product rule: If $h(x)=f(x) \cdot g^{\prime}(x)$, then

$$
\left(\int h\right)(x)=f(x) \cdot g(x)-\left(\int\left(f^{\prime} \cdot g\right)\right)(x)
$$

where $\left(\int\left(f^{\prime} \cdot g\right)\right)$ is an antiderivative of the function $\left(f^{\prime} \cdot g\right)(x)=f^{\prime}(x) \cdot g(x)$.

Definite integrals

If f is a continuous real function, then the definite integral of f over the interval $[a, b]$ is the total area between the graph of f and the x-axis bounded by the points $x=a$ and $x=b$. The definite integral is written as $\int_{a}^{b} f(t) \cdot d t$.

Fundamental theorems of calculus

The fundamental theorems of calculus are the following facts.
FTC1 If f is a continuous real function, then

$$
F(x)=\int_{0}^{x} f(t) \cdot d t
$$

is an antiderivative of f.
FTC2 If f is a continuous real function and if $\left(\int f\right)$ is any antiderivative of f, then

$$
\int_{a}^{b} f(t) \cdot d t=\left(\int f\right)(b)-\left(\int f\right)(a)
$$

